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A B S T R A C T

Residential load profiles (RLPs) play an increasingly important role in the optimal operation and planning
of distribution systems, particularly with the rising integration of low-carbon energy resources such as PV
systems, electric vehicles, small-scale batteries, etc. Despite the prevalence of various data-driven models
for generating consumption profiles, there is a lack of clear conclusions about their relative strengths
and weaknesses. This study undertakes a comprehensive comparison of frequently used data-driven models
in recent research, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAE),
Wasserstein GANs (WGAN), WGANs with Gradient Penalty (WGANGP), Gaussian Mixture Models (GMMs), and
Gaussian Mixture Copulas (GMC). The presented comparison explores the effectiveness of the above-mentioned
models on transformer- and consumer-level consumption profiles, as well as for different time resolutions
(15-min, 30-min, and 60-min). The objective of this research is to elucidate the respective advantages and
drawbacks of these models, thereby providing valuable insights for subsequent research in this field.
1. Introduction

In 2019, the European Commission announced The European Green
Deal, where achieving carbon neutrality by 2050 is one of the most
critical goals [1]. The sustainability of cities plays a vital role in achiev-
ing carbon neutrality, which requires households to rapidly increase
the adaptation rate of low-carbon energy resources [2]. However,
these goals pose significant challenges to distribution system operators
(DSOs), as the volatility of low-carbon energy resources such as photo-
voltaic (PV) and electric vehicles (EV) can create significant uncertainty
in residential load profiles (RLPs) [3].

RLPs are the base for extensive applications such as demand re-
sponse planning [4,5], integration of renewable energy sources [6]
and EVs [7], system risk analysis [8,9] and distribution system plan-
ning [10], etc. However, despite their vast applications, the accessi-
bility of consumer data in Europe is significantly hindered by strict
privacy laws [11], with only a few open databases available [12–
14]. Nevertheless, the effectiveness of these planning and operation
approaches relies on the quality and representativeness of the used
RLPs. They are crucial for DSOs to make well-informed planning and
operation decisions [15,16]. Given the scarcity of data in most cases,
coupled with the high demand for RLPs to support the higher-level
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tasks mentioned above, it is increasingly essential to develop models
capable of generating RLPs with statistical characteristics similar to
real-world data. The process of generating data with the same statistical
features of a given data set is known in the machine learning field as
data augmentation and has proven to improve the performance of such
data-driven models [9,17]. In energy research, generated RLPs have
been used in different applications, such as described in [18–20]. In
these works, the generated profiles are used as augmented data for
advanced load prediction model training. Similarly, in [21], generated
profiles are used for non-intrusive load monitoring algorithms training.
In [22,23], generated profiles can be used to understand consumption
patterns and optimize the system planning.

In the existing literature, researchers employ three primary ap-
proaches to generate RLPs. The first approach exploits Markov Chain
models [7,24,25]. These methods typically model RLPs indirectly, em-
ploying Markov Chains to simulate consumption behaviors first and
then compute the corresponding RLPs. The focus of this paper is on
directly modeling RLPs using data-driven models but not indirectly
through modeling behaviors. Hence, Markov Chain models are not
included in the presented model comparison. The second approach
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employs classical statistical models such as Copulas, whereas the third
employs deep learning methodologies.

Traditional models for RLPs often employ methods such as Gaussian
Mixture Models (GMMs) and Copulas. In [26,27], GMMs are proposed
to model the power distribution for each quarter of the day. In this
model, the consumption at each time step is represented as a separate
random variable. Although GMMs effectively reproduce the mean and
variance of the original data, they may fail to model the correlation
between different time steps, because GMMs model each time step in-
dependently. Building on [27], the work in [28] proposes a conditional
multivariate elliptical Copulas model that can capture the correlation
between time steps. Nevertheless, the model’s performance decays as
the resolution of the data increases. The work in [29] compares the
performance of different multivariate Copulas functions in simulating
EV charging consumption profiles. The student-t Copulas showed the
best performance.

With advancements in artificial intelligence, machine learning offers
a new approach to modeling RLPs, especially the ones based on deep
learning models [30]. In [31], Generative Adversarial Networks (GANs)
were employed to generate PV and wind generation profiles, success-
fully demonstrating GAN’s capability to incorporate spatiotemporal
correlations of renewable energy sources during profile generation.
In [32], an Auxiliary Classifier GAN structure was proposed to generate
RLPs associated with specific standard profiles obtained using 𝑘-means.
Further, GANs have been used in [18–20] for RLPs generation to train
other models. In [33], Conditional Wasserstein Generative Adversarial
Network with Gradient Penalty (CWGAN-GP) is utilized for proba-
bilistic load forecasting, where GANs are used to assist a forecaster
by generating residual scenarios. These GAN-based models typically
generate one profile at a time, which means they do not consider
the correlation between profiles. To address this, the work in [34]
proposed a MultiLoad-GAN that considers spatial–temporal correlations
among a set of loads to generate many realistic synthetic consumption
profiles. In a different approach, the work in [35] proposed a flow-
based generative network to model RLPs, which outperformed GANs
in aspects such as fitting peak and valley probability density functions.
In [36], a transferable flow-based generation model was introduced for
day-ahead consumption profile prediction, and pre-training was per-
formed using transfer learning. Besides GANs and flow-based models,
the Variational Auto-Encoder (VAE) is also a popular generative model.
The work in [37] proposed VAE to generate EV charging profiles, and
the results demonstrate that VAE can retain the temporal correlation
and probability distribution of the original consumption profiles. The
work in [38] proposed a multivariable load state generation model
based on conditional VAE, which shows better generation quality than
basic VAE. In contrast to conventional methods, machine-learning-
based techniques typically do not require initial assumptions such as
a specific distribution function (unlike models such as GMMs). This
implies that machine-learning-based methods may be more effective
in capturing latent correlations and generating more realistic RLPs.
However, this flexibility can also make the models challenging to train
and may lead to unstable results. For instance, GAN models are noto-
riously hard to train. Another potential issue specific to GAN-related
models is model collapse, a scenario where the model starts to generate
a limited diversity of outputs, consequently failing to reproduce the
original distribution accurately.

Despite the broad range of models available in the literature for
profile generation, a comprehensive comparison and a guide of model
selection depending on the application between machine learning-
based models, such as GANs, and traditional models, such as Copulas, is
still missing. This study aims to address this gap by conducting a perfor-
mance comparison of the most frequently employed data-driven models
in recent research, namely GMMs [26,27], GANs [20,39], VAE [37,
38], WGAN [18,31], WGAN-GP [33], and Gaussian Mixture Copula
(GMC) [27,29]. The performance comparison presented in this paper

explores the effectiveness of these models on both consumer- and
transformer-level consumption profiles and in different time resolu-
tions (15-min, 30-min, and 60-min). It is essential to highlight that
conducting a wholly fair comparison is challenging, given the distinct
mathematical underpinnings of each model. However, we are com-
mitted to providing a balanced evaluation. The contributions of this
research are as follows.

• A comprehensive performance assessment of six state-of-the-art
RLP modeling methods and a detailed analysis of their strengths
and weaknesses are presented. This evaluation provides criti-
cal insights into the effectiveness of each method in various
application scenarios.

• The identification and recommendation of the most appropriate
RLP modeling approaches for different tasks, which are valuable
for generating high-quality RLPs that are tailored for higher-level
applications, such as demand response and system planning.

The Python code, datasets, and other related materials of this re-
search are freely available in [40] and [41].

2. Modeling of residential load profiles

In the modeling of RLPs, a typical daily profile is segmented into
𝑇 discrete time steps. For instance, RLPs with a resolution of 15 min
are characterized by 𝑇 = 96 time steps, while those with a 30-min
resolution comprise 𝑇 = 48 time steps. Each time step within these
profiles corresponds to a specific value of active power consumption.

In this paper, we denote each time step as a continuous random
variable 𝑋𝑖, where 𝑖 = 1, 2,… , 𝑇 . The realized value of 𝑋𝑖 is donated
as 𝑥𝑖, then the probability density of 𝑥𝑖 can be denoted as 𝑝𝑖(𝑥𝑖). The
realized value of active power consumption at the 𝑖th time step in
the 𝑗th RLP is represented by 𝑥𝑖𝑗 . Consequently, the set of all RLPs
is expressed as 𝐿 = {𝑙𝑗}𝑁𝑗=1 = {(𝑥1𝑗 , 𝑥2𝑗 ,… , 𝑥𝑇 𝑗 )}𝑁𝑗=1, where each 𝑙𝑗
represents an RLP in the dataset. Each 𝑙𝑗 depicts a unique power
consumption pattern across the 𝑇 time steps, embodying the practical
measurements or observations of a specific RLP.

3. Model introduction

Gaussian Mixture Models: A GMMs is a weighted sum of normal
distributions, which is usually defined as [42]:

𝑝(𝑥) =
𝐾
∑

𝑖=1
𝜔𝑖 (𝑥|𝜇𝑖, 𝜎𝑖), (1)

where 𝐾 is the total number of components of GMMs,  is the normal
distribution, 𝜇𝑖, 𝜎𝑖 are the mean and variance of 𝑖th normal distribution,
𝜔𝑖 is the weight of 𝑖th model and ∑𝐾

𝑖=1 𝜔𝑖 = 1, 𝑥 represents the
data point or observation, and 𝑝(𝑥) is probability density of the data
point 𝑥 being generated by the GMMs. The weight and parameters of
components of GMMs can be solved by the expectation maximization
(EM) algorithm. In this paper, each 𝑝𝑖(𝑥𝑖),∀𝑖 = 1, 2,… , 𝑇 is modeled by
GMMs. The details are described in Section 5.

Generative Adversarial Networks: A GANs comprises two compo-
nents: a generator and a discriminator. The training process of a GAN is
conceptualized as a min–max game. The objective of the generator is to
maximize the losses of the discriminator by producing samples that the
discriminator cannot distinguish from real ones, while the discriminator
aims to maximize the losses of the generator by correctly identifying the
synthetic samples [43]. Ultimately, the network is expected to achieve
a Nash equilibrium, where neither the generator nor the discriminator
can further improve by changing their strategies. The loss function of
discriminator 𝐿𝐷 is defined:

min
𝐷

𝐿𝐷 = −1
2
E𝑙∼𝑝data

[

log𝐷(𝑙)
]

−1E
[

log(1 −𝐷(𝐺(𝑧)))
]

,
(2)
2 𝑧∼𝑝𝑧



where 𝑝data is the distribution of real data, 𝑝𝑧 is the distribution of the
noise, 𝑙 and 𝑧 represents the real sample (in this paper, 𝑙 corresponds
to RLP) and noise, 𝐷(𝑙) and 𝐺(𝑧) are the output of discriminator and
generator respectively. The loss function of generator 𝐿𝐺 is defined as:

min
𝐺

𝐿𝐺 = −E𝑧∼𝑝𝑧 [log𝐷(𝐺(𝑧))]. (3)

Thus, the total GAN loss is given by the sum of the generator and
discriminator losses:

min
𝐺

max
𝐷

𝐿𝐺𝐴𝑁 = min
𝐷

𝐿𝐷 + min
𝐺

𝐿𝐺 , (4)

where 𝐿𝐺𝐴𝑁 is the total GAN loss.
Wasserstein Generative Adversarial Network: Similar to GAN,

WGAN comprises a generator and a critic. WGAN modifies the GAN’s
loss function to use the Wasserstein distance, also known as the Earth-
Moving (EM) distance [44]. The benefit of this approach is that it
provides smoother gradients and avoids the problem of mode collapse
often seen in standard GANs. The objective function of a WGAN can be
written as follows:

min
𝐺

max
𝐷∈̃

E𝑙∼𝑝data [𝐷(𝑙)] − E𝑧∼𝑝𝑧 [𝐷(𝐺(𝑧))], (5)

where ̃ is the set of 1-Lipschitz functions, 𝐷(𝑙) is the output of the
critic for real data, and 𝐷(𝐺(𝑧)) is the output of the critic for generated
data. The generator tries to minimize the objective in (3), while the
critic tries to maximize it.

WGAN with Gradient Penalty: WGAN-GP is an extension of the
original WGAN. It introduces a penalty term to the loss function to
ensure that the critic of the network satisfies the Lipschitz constraint,
which helps mitigate problems such as mode collapse and unstable
training [45]. The objective function of a WGAN-GP is expressed as:

min
𝐺

max
𝐷

E𝑙∼𝑝data [𝐷(𝑙)] − E𝑧∼𝑝𝑧 [𝐷(𝐺(𝑧))]

+𝜆E𝑙∼𝑝𝑙
[(‖∇𝑙𝐷(𝑙)‖2 − 1)2],

(6)

where 𝐷(𝑙) is the output of the critic for real data, and 𝐷(𝐺(𝑧)) is the
output of the critic for generated data. The generator 𝐺 attempts to
minimize the objective in (4), while the critic 𝐷 tries to maximize it.
The third term, 𝜆E𝑙∼𝑝𝑙

[(‖∇𝑙𝐷(𝑙)‖2 − 1)2], is the gradient penalty. Here,
𝑙 is an interpolated sample created by blending a real data sample and
a generated data sample. ∇𝑙𝐷(𝑙) is the gradient of the critic’s output
with respect to this interpolated sample, and 𝜆 is a hyperparameter
that controls the strength of the penalty. This gradient penalty term
encourages the gradient norm of the critic’s output to be close to 1
almost everywhere. This is done to enforce the Lipschitz constraint,
leading to improved training stability.

Variational Autoencoder: VAE is a type of generative model that
combines deep learning and variational inference techniques to model
complex data distributions [46]. It is composed of two primary compo-
nents: an encoder and a decoder. The encoder maps input data points
𝑙 into a latent space 𝑧 by modeling them as a distribution 𝑄(𝑧|𝑙).
Meanwhile, the decoder maps these latent points back to the data space
by modeling them as a distribution 𝑃 (𝑙|𝑧). The objective function of a
VAE can be written as:
VAE(𝜃, 𝜙; 𝑙) = E𝑧∼𝑄𝜙(𝑧|𝑙)[log𝑃𝜃(𝑙|𝑧)]

−KL(𝑄𝜙(𝑧|𝑙) ∥ 𝑃 (𝑧)),
(7)

where 𝑃𝜃(𝑙|𝑧) represents the likelihood of data given the latent variable
𝑧, 𝑄𝜙(𝑧|𝑙) is the approximate posterior that encodes the data 𝑙 into the
latent space, 𝑃 (𝑧) is the prior belief over the latent variable, often cho-
sen to be a standard normal distribution for simplicity, 𝐾𝐿 stands for
the Kullback–Leibler divergence. The first term E𝑧∼𝑄𝜙(𝑧|𝑙)[log𝑃𝜃(𝑙|𝑧)] is
the reconstruction loss, which ensures that the VAE can reconstruct the
input data well after encoding it. The second term KL(𝑄𝜙(𝑧|𝑙) ∥ 𝑃 (𝑧))
is the regularization term, which measures the divergence between the

approximate posterior 𝑄𝜙(𝑧|𝑙) and the prior 𝑃 (𝑧).
Table 1
Five test cases including two transformer-level and three consumer-level dataset.

Test case Year Households Resolution

Netherlands-traf [12] 2013 82 60 min
United Kingdom-traf [14] 2013 94 30 min
Netherlands-cons [12] 2013 1 60 min
United Kingdom-cons [14] 2013 1 30 min
Germany-cons [13] 2020 1 15 min

Gaussian Mixture Copulas: Derived from Sklar’s theorem [47],
Copulas are statistical constructs designed to separate the dependency
structure of multivariate data from their marginal distributions. GMC
model combines the strengths of both GMMs and Gaussian Copulas.
In a GMC, the marginal distributions of the data are modeled using
a GMMs, allowing the model to handle non-normal marginal distribu-
tions and mixtures of distributions. The dependence structure between
the variables is then modeled using Gaussian Copulas. The first step
in constructing a GMC is to fit a GMMs to each of the marginal
distributions of the data:

𝑝𝑖(𝑥𝑖) =
𝐾
∑

𝑘=1
𝜔𝑖,𝑘 (𝑥𝑖|𝜇𝑖,𝑘, 𝜎2𝑖,𝑘), (8)

where  (𝑥𝑖|𝜇𝑖,𝑘, 𝜎2𝑖,𝑘) denotes a normal distribution with mean 𝜇𝑖,𝑘 and
variance 𝜎2𝑖,𝑘, 𝜔𝑖,𝑘 are the mixture weights for the 𝑖th random variable
𝑥𝑖, and 𝐾 is the number of components in the mixture. After fitting the
GMMs, the cumulative distribution function (CDF) 𝐹𝑖 of each marginal
distribution can be estimated. The Gaussian Copulas is then applied to
the resulting CDFs:

𝐶𝐑(𝑙) = 𝜙𝑅
(

𝐹−1
1 (𝑥1), 𝐹−1

2 (𝑥2),… , 𝐹−1
𝑇 (𝑥𝑇 ) ;𝐑

)

, (9)

where 𝐹−1
𝑖 is the inverse CDF of the 𝑖th random variable (obtained from

the GMMs), 𝐑 is a correlation matrix, and 𝜙𝑅 is the joint CDF of a
multivariate normal distribution with covariance matrix equal to 𝐑.

4. Data description

To conduct an adequate evaluation of the models, five test cases
with varying resolutions were designed using data from three different
datasets. Table 1 outlines the details of the used test cases. The first
two test cases represent transformer-level RLPs. The latter three cases
focus on consumer-level RLPs from single households. These 5 test
cases were built to comprehensively test all models’ ability to model
complex statistical behavior at high resolutions. Note that while the
UK dataset (second test case in Table 1) includes data from more than
5,000 households, for a fair comparison, a subset of 94 households was
randomly selected for this study.

5. Modeling approach

This section introduces the modeling approach of the six models
described in Section 2. For each test case in Table 1, the performance
of these six selected models was compared. Fig. 1 summarizes the
structure and modeling approach of each of these models, highlighting
the input (or original) data and the generated data, as well as each
model’s component, including the loss function and the latent variables
(or space) if the model considers one. A summary of the models’ setup
is described next.

GMMs: As we mentioned in Section 2, each time step can be
considered as a random variable 𝑋𝑖, 𝑖 = 1, 2,… , 𝑛, following the dis-
tribution 𝑝𝑟𝑒𝑎𝑙(𝑥𝑖). We then use GMMs to model the distribution of each
𝑋𝑖 to obtain the modeled distribution 𝑝𝑔𝑚𝑚(𝑥𝑖). Therefore, 𝑛 distinct
GMMs are constructed during the development phase. During the data
generation phase, sample once from all GMMs associated with each
time step to get {𝑥1, 𝑥2,… , 𝑥𝑛} and then combined to obtain one RLP.

The optimal number of components is determined by the Bayesian



Fig. 1. Illustration of the construction of six models and modeling approach high-
lighting the input (or original) data and the generated data, as well as each model’s
component, including the loss function and the latent variables (or space) if the model
considers one.

Information Criterion (BIC). Further details regarding the selection of
component numbers are provided in Appendix A.1.

GMC: GMC builds upon the foundation of GMMs. In the modeling
phase, each GMMs associated with a single time step is treated as
a separate marginal distribution, resulting in a total of 𝑛 marginal
distributions. The RLPs data is then transformed into cumulative prob-
abilities (bounded between [0, 1]) by applying the CDF of the GMMs.
Subsequently, a multivariate Gaussian distribution is utilized to fit the
transformed data. In the generating phase, cumulative probabilities are
sampled from multivariate Gaussian distribution, and then the value
of each time step is generated by applying inverse CDF on sampled
cumulative probabilities.

GAN & WGAN & WGANGP: In the training phase, RLPs together
with generated RLPs (generated by the generator) are fed into the
discriminator (critic), as Fig. 1 shows. Then, the discriminator (critic) is
trained to minimize the classification loss, as defined in (2), while the
generator is trained to maximize the loss of the discriminator (critic),
as defined in (3). After the model is trained, random noise is fed into
the generator to generate RLPs.

VAE: For VAE, a similar sampling process as done with the GAN
model is performed. Here, each RLP is considered as one sample
and is fed to the model. The training is conducted to minimize the
reconstruction loss and KL divergence loss, as defined in (7). After the
model is trained, random noise is fed into the encoder to generate RLPs.

For the sake of fairness in comparison, the architecture of the deep
generative models, including the VAE, whose decoder is designed to
have the same structure as the GAN’s generator, is kept consistent
in depth and width. Further details on the configuration and param-
eter settings of these deep generative models are comprehensively
documented in Appendix A.2.

6. Comparison metrics

Considering the metrics used in [27,28,32,48], the assessment of
the generated RLPs is conducted using a variety of statistical measures
to ensure a comprehensive and robust evaluation. These metrics are
presented next:

Wasserstein distance: Also known as the Earth Moving Distance,
this metric is sensitive to the geometry of the distribution [49] and
measures the minimum cost of transporting mass to transform one
distribution into the other. The Wasserstein distance 𝑊 (𝜇, 𝜈) between
two probability measures 𝜇 and 𝜈 is defined as:

𝑊 (𝜇, 𝜈) = inf
𝜋∈𝛱(𝜇,𝜈)∫R𝑑×R𝑑

‖𝑙𝑢 − 𝑙𝑣‖ 𝑑𝜋(𝑙𝑢, 𝑙𝑣), (10)

where 𝑊 (𝑢, 𝑣) is the Wasserstein distance between 𝜇 and 𝜈, 𝑙𝑢 and 𝑙𝑣
are the sample in 𝜇 and 𝜈. A smaller value of 𝑊 (𝜇, 𝜈) indicates greater
similarity between 𝑢 and 𝑣. Specifically, 𝑊 (𝜇, 𝜈) = 0 means 𝑢 and 𝑣 are
identical.

Jensen–Shannon (JS) divergence: It is a symmetric measure of
the similarity between two probability distributions. Ranges from 0
(when the distributions are the same) to log 2 (when the distributions
are disjoint). The JS divergence 𝐷𝐽𝑆 (𝑃 ∥ 𝑄) between two probability
distributions 𝑃 and 𝑄 is given by:

𝐷𝐽𝑆 (𝑃 ∥ 𝑄) = 1
2
𝐷𝐾𝐿(𝑃 ∥ 𝑀) + 1

2
𝐷𝐾𝐿(𝑄 ∥ 𝑀), (11)

where 𝑀 = 1
2 (𝑃 +𝑄) and 𝐷𝐾𝐿 is the Kullback–Leibler divergence.

Multi-Maximum Mean Discrepancy (MK-MMD): This metric quan-
tifies the difference between distributions using their mean embeddings
within a reproducing kernel Hilbert space (RKHS) [50]. Typically
employing Gaussian kernels, MK-MMD can detect diverse distributional
differences in a high-dimensional space. MK-MMD is defined as:

𝑀𝐾 −𝑀𝑀𝐷2(𝑃 ,𝑄) = 1
𝑛(𝑛 − 1)

𝑛
∑

𝑖≠𝑗

𝑃
∑

𝑝=1
𝛼𝑝𝑘𝑝(𝑙

𝑝
𝑖 , 𝑙

𝑝
𝑗 )

− 2
𝑛𝑚

𝑛,𝑚
∑

𝑖,𝑗

𝑃
∑

𝑝=1
𝛼𝑝𝑘𝑝(𝑙

𝑝
𝑖 , 𝑙

𝑞
𝑗 )

+ 1
𝑚(𝑚 − 1)

𝑚
∑

𝑖≠𝑗

𝑃
∑

𝑝=1
𝛼𝑝𝑘𝑝(𝑙

𝑞
𝑖 , 𝑙

𝑞
𝑗 ),

(12)

where 𝛼𝑝 are coefficients of the linear combination, 𝑃 is the total
number of kernels, 𝑘𝑝 is the 𝑝th kernel function, 𝑛 and 𝑚 are the
number of samples from distribution 𝑃 and 𝑄, 𝑙𝑝 and 𝑙𝑞 are the sample
in distribution 𝑃 and 𝑄 respectively. A smaller value of MK-MMD
indicates greater similarity between two distributions, and a 0 value
of MK-MMD indicates two distributions are identical.

Kolmogorov–Smirnov (KS) Distance: It is a measure of the dis-
tance between the cumulative distribution functions of two distribu-
tions. The KS distance 𝐷𝐾𝑆 (𝐹 ,𝐺) between two CDFs 𝐹 and 𝐺 is defined
as:

𝐷𝐾𝑆 (𝐹 ,𝐺) = sup
𝑙
|𝐹 (𝑙) − 𝐺(𝑙)|. (13)

KS distance can handle any distribution and is sensitive to differences in
both the location and shape of the empirical CDFs. Similar to MK-MMD,
a smaller value of KS distance indicates greater similarity between two
distributions, and a 0 value indicates two CDFs are identical.

Autocorrelation: It is also an important factor in assessing the
quality of generated time series data. The autocorrelation 𝑅(𝑘) of a time
series at lag 𝑘 is given by:

𝑅(𝑘) =
∑𝑁−𝑘

𝑡=1 (𝑋𝑡 − �̄�)(𝑋𝑡+𝑘 − �̄�)
∑𝑁

𝑡=1(𝑋𝑡 − �̄�)2
, (14)

where 𝑅(𝑘) is the autocorrelation at lag 𝑘, 𝑁 represents the total
number of data points in the time series, 𝑋𝑡 represents the value of the
time series at the time 𝑡, �̄� is the sample mean of the time series. In
this research, we use the Mean Square Error (MSE) of Autocorrelation
of generated RLPs and original RLPs to evaluate the quality of modeling
time correlation.



Fig. 2. Right side: Results generated by six models for two transformer-level test cases. Left side: Original data. The color of the RLPs corresponds to the sum of daily consumption.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Box plots of the results generated by different models and the original data of
NL-traf and UK-traf test cases, where the red dashed line represents the highest and
lowest consumption values in the original data.

7. Generated results

7.1. Transformer-level data results

The original data and results generated by the six models for the
NL-traf and UK-traf test cases are shown in Fig. 2. One of the uses of
RLPs is supporting the planning and operation of distribution systems,
peak power consumption and its occurrence time should be correctly
estimated to improve the reliability of the distribution network (e.g., by
considering the worst-case consumption scenario). After comparing the
generated results with the original data in Fig. 2, it is clear that all
models successfully replicated the original pattern. For example, in the
NL-traf test case, the peaks usually occur around 9 AM and 8 PM,
while in the UK-traf test case, the peaks usually occur around 8 PM.
All models effectively capture these fluctuations.

Another observation is that the GMMs only generate RLPs of an
average energy consumption value (which can be observed in Fig. 2,
that RLPs generated by GMMs have the basically same color). This is
due to the GMMs modeling each time step independently. As a result,
GMMs typically produce RLPs with average daily consumption when
generating the RLPs. Besides that, GMMs fall short in modeling the time
correlation between different time steps. Table 2 demonstrates that
GMMs have the highest MSE of the correlation matrix. Additionally,
in Fig. 3, the box plot reveals that GMMs is the only model that
successfully captures the highest peak value in both the UK-traf and
NL-traf test cases, where the red dashed line represents the extreme
values of the original data.

In Fig. 4, it is observed that the generated RLPs of GMM and
GMC have negative values, an anomaly that would not occur in real-
world data. This phenomenon is evident in the box plot in Fig. 3.
In the NL-traf test case, the lowest consumption is 0 kWh. However,
GMMs generate non-positive values. This phenomenon arises from the
Gaussian’s long tails, and it is absent in deep generative models because
the output of their generator (or the decoder for VAE) is bounded by
the activation function (e.g., Tanh [−1,1]).



Table 2
Evaluation of different models using comparison metrics for NL/UK-traf test case.

Models Wasserstein
distance

JS
divergence

KS
distance

MK-MMD Correlation
MSE

NL test case (60 min)
GAN 0.8583 0.0676 0.0300 0.0253 0.0045
WGAN 0.8169 0.0743 0.0386 0.0218 0.0043
WGANGP 0.7543 0.0931 0.0743 0.0247 0.0060
VAE 1.4678 0.0903 0.0728 0.0283 0.0234
GMC 1.4816 0.2890 0.0483 0.0111 0.0341
GMMs 0.2516 0.4877 0.0243 0.0741 0.5991

UK test case (30 min)
GAN 0.6929 0.0954 0.0465 0.0330 0.0170
WGAN 0.6000 0.1318 0.0439 0.0178 0.0023
WGANGP 0.2824 0.1080 0.0249 0.0132 0.0107
VAE 0.6684 0.1296 0.0481 0.0255 0.0804
GMC 0.4860 0.0748 0.0289 0.0107 0.0247
GMMs 0.0481 0.0460 0.0058 0.0482 0.2323

Comparing the generation results of GMC with other models, it can
be noticed that GMC falls short in generating RLPs with high daily
consumption in both NL-traf and UK-traf test cases. As can be seen from
Fig. 4, the RLPs generated by GMC have a relatively light color that
represents low daily consumption. This phenomenon is also observed
in consumer-level test cases, evident in the box plot in Fig. 3. A more
detailed explanation of this phenomenon is provided in Section 8. On
the other hand, looking closely at the generated RLPs of VAE for both
NL-traf and UK-traf, it can be noticed that there is a tendency for
the model to produce RLPs of higher total daily consumption. This
phenomenon is more clear in consumer-level test cases, as shown in
Section 7.2.

Table 2 presents the results using the evaluation metrics of the six
models for the NL-traf and UK-traf test cases. The findings suggest
that (1) GMMs, while struggling with modeling time step correlations,
excel in modeling the distribution of individual time steps, consistently
performing the best in terms of the Wasserstein distance. (2) GAN-
related models (GAN, WGAN, and WGAN-GP) generally perform well in
modeling time correlations, with GAN exhibiting a particular strength
in minimizing JS divergence. However, GAN-related models fail to
reproduce the mean and variances. (3) GMC often emerges as the
top performer in MK-MMD, a metric that compares means in high-
dimensional space. This might suggest that GMC could be the most
balanced approach.

7.2. Consumer-level data results

Fig. 4 illustrates the original data and the results generated by six
models for UK-cons, NL-cons, and GE-cons test cases. In alignment with
previous observations, all models proficiently reproduce the patterns of
peaks and valleys. Fig. 4 also shows that the results generated by the
GAN model begin to exhibit reduced diversity, or in other words, the
GAN model starts to generate several similar RLPs. This phenomenon
is known as model collapse and has been described in [51]. Low RLPs
generation diversity is apparent in Fig. 4(b), where the generated
results are noticeably less diverse than the original data. Compared to
GAN, other deep generative models such as WGAN, WGAN-GP, and
VAE appear more adept at generating diverse results. As previously
discussed, VAE tends to generate RLPs with higher total daily consump-
tion. This trend is again observable in Fig. 4(b), and it is particularly
noticeable in Fig. 4(c).

The generated RLPs in consumer-level test cases by GMC and GMMs,
compared to transformer-level cases, shows clearly that these models
can produce results with negative values. This observation is more
evident in Fig. 5. Aligned with the findings in Section 7.1, GMC
struggles to generate RLPs with high peak values. However, it is noted

that GMC exhibits exceptional performance in the UK-cons test case,
Table 3
Evaluation of different models using comparison metrics for NL/UK/GE-cons test case.

Models Wasserstein
distance

JS
divergence

KS
distance

MK-MMD Correlation
MSE

NL test case (60 min)
GAN 0.0192 0.1587 0.3723 0.0144 0.0528
WGAN 0.0291 0.1766 0.2708 0.0133 0.0154
WGANGP 0.0211 0.1890 0.3214 0.0084 0.0434
VAE 0.0112 0.3062 0.2752 0.0031 0.0273
GMC 0.0331 0.6113 0.2142 0.0107 0.0134
GMMs 0.0061 0.6510 0.2437 0.0265 0.0844

UK test case (30 min)
GAN 0.0145 0.1147 0.0704 0.0063 0.0441
WGAN 0.0091 0.1446 0.0535 0.0060 0.0059
WGANGP 0.0096 0.0998 0.0060 0.0126 0.0142
VAE 0.0174 0.2104 0.0485 0.0201 0.0039
GMC 0.0043 0.4574 0.0153 0.0055 0.0034
GMMs 0.0029 0.7503 0.0232 0.0056 0.0734

GE test case (15 min)
GAN 0.0306 0.1820 0.2799 0.0222 0.0373
WGAN 0.0159 0.1993 0.1515 0.0144 0.0176
WGANGP 0.0178 0.1836 0.2361 0.0273 0.0541
VAE 0.0745 0.2060 0.1604 0.0218 0.0091
GMC 0.0391 0.6058 0.1375 0.0143 0.0748
GMMs 0.0032 0.6554 0.1553 0.0257 0.1313

where it ranks first in KS Distance, MK-MMD, Correlation MSE, and
second in Wasserstein Distance (see Table 3). Further exploration of
this occurrence is presented in Section 8. Finally, as a general result,
it is observed that GAN-related models continue to demonstrate good
performance in modeling time correlation. Moreover, it was found that
WGAN had a very stable performance in modeling time correlation no
matter if consumer- or transformer-level test cases.

7.3. Peak generation analysis

Peak consumption is a critical factor in modeling RLPs due to its
significance in system planning and operation. This section offers a
detailed quantitative evaluation of how accurately models replicate
these peak values, expanding upon the preliminary discussion in Sec-
tion 7. To evaluate the model’s performance in this dimension, a
dedicated time-peak plot is used as observed in Fig. 6. This time-peak
plot displays the peak consumption of each RLP and its corresponding
time of occurrence, represented as a point, denoted as (time, peak).
Then, the average (or average time-peak) center is derived from the
set of (time, peak) points generated by the model. Subsequently, the
proximity of these centers are calculated using the Euclidean distance
metric. The following comparison provides an informative perspective
on the models’ ability to generate peak consumption at the correct time
step.

Fig. 6 shows the time-peak plots for five different test cases. As
shown in Fig. 6, the GAN and WGAN-GP models are more closely
aligned to the center of the original data when compared with the other
models. This finding is further confirmed when Table 4 is examined,
which shows that the GAN correlation model performs well in modeling
both temporal and peak correlations. Similarly, the GMC model also
shows commendable performance in transformer-level test cases. In
contrast, it is evident from Fig. 6 and Table 4 that GMMs consistently
underperform. This finding echoes the previous conclusions that GMMs
fail to account for correlations between time steps, whereas the GAN
models show superior performance in this regard.

8. Discussion

It is worth noting that the GMC shows solid performance on the
UK-cons test case, ranking highly on almost all metrics. This raises
the question of why GMC performs so well in this case and why



Fig. 4. Right side: Results generated by six models for two transformer-level test cases. Left side: Original data. The color of the RLPs corresponds to the sum of daily consumption.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
The Euclidean distance between the centers of generated data and the center of the original data in ‘Time-Peak’ graph.
Test case GAN WGAN WGAN-GP VAE GMC GMMs

Netherlands-traf 1.0477 2.3562 1.5200 3.0638 1.2061 17.1290
United Kingdom-traf 5.5904 1.1452 0.6670 1.7507 0.5954 6.6306
Netherlands-cons 0.1012 0.3438 0.1989 1.2130 0.8944 0.8941
United Kingdom-cons 0.2632 0.6793 0.3087 0.9894 0.4694 1.0246
Germany-cons 4.4367 4.6575 2.7051 2.4672 5.9377 5.2930



Fig. 5. Box plots of the results generated by different models and the original data of
three consumer-level test cases, where the red dashed line represents the highest and
lowest consumption values in the original data.

Fig. 6. Time-peak graph for five test cases. The length of the line perpendicular to
and parallel to the coordinate axis through the center point represents the variance on
this axis.

its performance decays in other test cases. Test case results have
shown that GMMs, as the basis of GMCs, perform well in modeling
Fig. 7. The distribution of original and generated cumulative probabilities of 5
test cases by GMC. The Wasserstein distance of generated and original cumulative
probabilities is computed. The figures show that the performance of the GMC is
influenced by the distribution shape of the cumulative probabilities.

Fig. 8. The distribution of electricity consumption of original and generated data (UK-
traf 30 min). The 𝑥-axis represents the active power consumption of a time step and
the 𝑦-axis represents the frequency.

marginal distributions. Therefore, the errors in the GMC model are
likely caused by inaccuracies in constructing the correlations of the
marginal distributions. Fig. 7 shows the distribution of the original
and generated cumulative probabilities, also known as uniform distri-
bution margins. Cumulative probabilities are obtained using the CDF
to transform the original data into the range [0, 1] as mentioned in
Section 5. Results show that the Gaussian Copulas more accurately
align with the cumulative probabilities of the UK-cons test case than
otherwise, especially in the tails, which closely match the distribution
of the original data. The Wasserstein distance further validates this
observation, showing significantly lower values for GMC (0.1) than
the other distances (greater than 0.2). Conversely, GMC also does not



Table 5
Summary of main findings.

Q1: Which model should be selected to model residential load profiles?
Considering the trade-off between performance and complexity, WGAN is often
preferred, consistently providing satisfactory results in various scenarios. However,
choosing the appropriate model depends on the specific application requirements.
As detailed in Section 8, standard GANs are advantageous for capturing precise
peak timings and temporal patterns, but they suffer from model collapse. On the
other hand, GMM offers simple implementation and fast training (within a few
minutes for test cases in this paper). Although GMMs effectively capture general
statistical consumption patterns, they do not adequately reproduce time
correlations.

Q2: How long does it take to train the compared models (model training
complexity)?
Training duration escalates with higher data resolution. GMMs train rapidly, within
minutes, across all test cases. GMC training spans under a minute to around twenty
minutes for 15-minute resolution RLPs. Utilizing dual GPU parallelism, deep
generative models require several minutes to twenty to thirty minutes for 15-min
resolution RLPs (based on the structure of the models and data in this paper).

Q3: Which model should be selected in case of insufficient amounts of data?
Deep generative models often require large amounts of data to produce reliable
and diverse results. Insufficient amounts of data increase the likelihood that these
models will overfit (models memorize data instead of learning to generate new
data). In this data-limited scenario, it is recommended to choose GMMs and GMC
(or other Copulas models), which are more robust to limited data sets and,
therefore, more likely to provide stable performance.

Q4: How to design a customized deep generative model for data with
different time resolutions?
The deep generative model framework proposed in this study provides a reference
for customized model development. Appendix A.2 details the adaptive architecture
of the network, where scalability is addressed through the parameter 𝑠. Adjusting 𝑠
upward accommodates higher data resolution, thereby tailoring the model to
specific data granularity requirements (for super high resolution, a redesign might
be necessary).

match the tails of the other test cases, which explains its inability
to generate high peak RLPs in these instances. From the above, it
can be concluded that the performance of GMC might depend heavily
on the distribution shape of the cumulative probabilities in practical
applications. Notably, the GMC exhibits enhanced congruence with
distributions that are closer to a bell shape, as exemplified by the UK-
consumer dataset. The reason behind that is GMC uses a multivariant
Gaussian to model the correlation between time steps which might not
align with the real data correlations. In contrast, deep generative mod-
els exhibit greater adaptability in modeling temporal correlations. This
flexibility stems from their inherent design, which is not constrained
by the assumption of a Gaussian distribution, thereby enabling more
consistent performance across varying data characteristics.

In our observations, GMMs consistently recorded the lowest Wasser-
stein distance. As mentioned earlier in Section 6, the Wasserstein
distance is particularly sensitive to the shape of the distribution.
Fig. 8 shows the distribution of the original and generated data.
It is worth noting that while the data generated by other models
often deviates slightly from the shape of the original distribution, the
distribution generated by the GMMs closely matches the shape of the
original data. The same phenomenon can be observed in other test
cases, which explains why GMMs always show the lowest Wasserstein
distance.

After evaluating the performance of six generative models, it was
observed that GMMs are good at modeling the overall distribution but
poor at capturing temporal dependencies. The GMC model builds on
the GMMs and performs better in modeling time-step dependencies.
However, as discussed previously, GMC often has difficulty generating
RLPs with peaks, and its ability to fit various distributions may not be as
good as deep generative models. Moreover, GMC tends to perform well
on MK-MMD, but determining the reason for this is challenging, given
the complexity of the MK-MMD metric. Nonetheless, it is recognized
that, unlike other models, GMC does not exhibit significant weaknesses
on all evaluation metrics, suggesting that it may be a model with the
best balance of features. Concerning the deep generative models, they
have shown excellent performance in modeling temporal dependencies,
especially the WGAN model. Furthermore, GAN-related models show
superiority in modeling correct (𝑡𝑖𝑚𝑒, 𝑝𝑒𝑎𝑘) pairs compared to other
models. GANs also achieve good results on JS divergence, probably
because GANs are trained fundamentally to minimize JS divergence.
However, deep generative models fail to reproduce the mean and
variance accurately of original data. To further assist in modeling RLPs,
Table 5 summarizes some practical questions and answers based on the
conclusions of this paper.

9. Conclusion

In this paper, the performance of six models was evaluated, simu-
lating five different test cases, including two sets of transformer-level
data and three consumer-level data. Six evaluation metrics for this
analysis were used. The results showed that no single model signifi-
cantly outperforms the others on all metrics, but each model exhibits
unique strengths and weaknesses. Deep generative models such as GAN,
WGAN, GAN-GP, and VAE have shown superiority in modeling time-
step correlations, while WGANs excel at modeling overall time step
dependencies, GANs excel at accurately predicting peak times. Both
GMC and GMMs, especially GMMs, are good at replicating overall
statistical patterns, although GMMs are not good at temporal correla-
tion. Additionally, a practical guide is provided in Table 5. As far as
future research on RLPs generation is concerned, we believe it would
be beneficial to develop a model that accurately represents tempo-
ral correlations and overall statistical patterns. Furthermore, to facil-
itate the optimal planning of future power distribution systems with
highly integrated PV, EV, etc., accurate future RLPs generation can be
crucial.

CRediT authorship contribution statement

Weijie Xia: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Resources, Software, Validation, Writing –
original draft, Writing – review & editing. Hanyue Huang: Formal
analysis, Methodology. Edgar Mauricio Salazar Duque: Resources,
Visualization, Writing – review & editing. Shengren Hou: Data cu-
ration, Resources. Peter Palensky: Project administration, Resources,
Supervision. Pedro P. Vergara: Methodology, Project administration,
Resources, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The dataset is cited in the paper, and the repository of the code is
also provided in the paper.

Acknowledgments

This publication is part of the project ALIGN4Energy (with
project number NWA.1389.20.251) of the research programme NWA
ORC 2020 which is (partly) financed by the Dutch Research Council
(NWO), The Netherlands. This research utilized the Dutch National
e-Infrastructure with support from the SURF Cooperative, The Nether-
lands (grant number: EINF-5398).



Fig. 9. Best number of components for timestep from 00:00 to 00:30 for UK-traf and
UK-cons test cases.

Table 6
Structure of the generator of GAN-related models. The ‘s’ is 1, 2, 3 for 60 min, 30 min,
and 15 min resolution test cases, respectively.

Layer Shape

Input Noise 5 × 𝑠
First layer: Fully Connected + BatchNorm + LeakyReLU (5 × 𝑠) × (30 × 𝑠)
Second layer: Fully Connected + BatchNorm + LeakyReLU (30 × 𝑠) × (60 × 𝑠)
Last layer: Fully Connected + BatchNorm + Tanh (60 × 𝑠) × (24 × 𝑠)

Table 7
Structure of the discriminator (critic) of GAN-related models. The ‘s’ is 1, 2, 3 for 60 min,
30 min, and 15 min resolution test cases, respectively.

Layer Shape

First layer: Fully Connected + BatchNorm
(LayerNorm) + LeakyReLU

(24 × 𝑠) × (240 × 𝑠)

Second layer: Fully Connected + BatchNorm
(LayerNorm) + LeakyReLU

(240 × 𝑠) × (120 × 𝑠)

Last layer: Fully Connected + BatchNorm
(LayerNorm) + Sigmod (No Simoid)

(120 × 𝑠) × 1

Appendix

A.1. Number of components of GMMs

The optimal number of components is determined by the BIC, which
is defined as:

BIC = ln(𝑁)𝑘 − 2 ln(�̂�), (15)

where ln(𝑁) is the natural logarithm of the number of observations, 𝑘 is
the number of parameters estimated by the model, �̂� is the maximized
value of the likelihood function for the model.

For each test case, the optimal number of components is chosen
corresponding to the minimum BIC value for each individual timestep.
Fig. 9 provides an illustration of this process, demonstrating how the
optimal number of component for timesteps between 00:00 and 00:30
are determined for the ‘UK-traf’ and ‘Uk-cons’ test cases.

A.2. Deep generative model building and training

The architectural design of the generators for GAN, WGAN, and
WGAN-GP models is shown in Table 6. In order to accommodate
higher-resolution data, we expand the network’s width accordingly.
The term ‘s’ is utilized as a scaling factor. For instance, the scaling
factor for WGAN-GP is set to 3, consequently augmenting the first
layer’s dimensions to 15 × 90. The structure of the discriminator
(also referred to as the ‘critic’ for WGAN and WGAN-GP models) is
shown in Table 7. Analogous to the generators, ‘s’ operates as a scaling
parameter to adjust the network’s width in line with the resolution.
In the discriminator design, GAN employs BatchNorm and a Sigmoid
activation function. However, in the WGAN and WGAN-GP models,
BatchNorm is substituted with LayerNorm, and the final layer has no
sigmoid function. The structure of VAE is shown in Table 8.
Table 8
Structure of VAE. The ‘s’ is 1, 2, 3 for 60 min, 30 min, and 15 min resolution test cases,
respectively.

Layer Shape

Encoder
First layer: Fully Connected + BatchNorm + LeakyReLU (24 × 𝑠) × (240 × 𝑠)
Second layer: Fully Connected + BatchNorm + LeakyReLU (240 × 𝑠) × (120 × 𝑠)
Mean layer: Fully Connected (120 × 𝑠) × (5 × 𝑠)
Log variance: Fully Connected (120 × 𝑠) × (5 × 𝑠)

Decoder
First layer: Fully Connected + BatchNorm + LeakyReLU (5 × 𝑠) × (30 × 𝑠)
Second layer: Fully Connected + BatchNorm + LeakyReLU (30 × 𝑠) × (60 × 𝑠)
Last layer: Fully Connected + BatchNorm + Tanh (60 × 𝑠) × (24 × 𝑠)

In the training process of deep generative models, the parame-
ters are set differently for transformer and consumer-level data. For
transformer-level data, a learning rate of 0.002 and a batch size of
64 are employed. Additionally, we find there is no obvious difference
using a larger learning rate for transformer-level data. Besides these, the
weight clip value for WGAN is set at 0.05, while the penalty coefficient
𝜆 for WGAN-GP is set at 10. For consumer-level data, a larger learning
rate is observed to yield better results. Consequently, a learning rate of
0.01 and a larger batch size of 180 are used in this case. For the training
of VAE, we find the classical structure works well for transformer-
level RLPs but fails to generate good results for consumer-level RLPs.
To solve this problem, we adjust the original loss function by adding
weight 𝛽 = 10 to construction loss. The new loss function becomes:
VAE(𝜃, 𝜙; 𝑥) = 𝛽E𝑧∼𝑄𝜙(𝑧|𝑥)[log𝑃𝜃(𝑥|𝑧)] − KL(𝑄𝜙(𝑧|𝑥) ∥ 𝑃 (𝑧)).
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