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Abstract— Anomaly detection is of considerable signifi-
cance in engineering applications, such as the monitoring
and control of large-scale energy systems. This paper in-
vestigates the ability to accurately detect and localize the
source of anomalies, using an autoencoder neural network-
based detector. Correlations between residuals are identi-
fied as a source of misclassifications, and whitening trans-
formations that decorrelate input features and/or residuals
are analyzed as a potential solution. For two use cases,
regarding spatially distributed wind power generation and
temporal profiles of electricity consumption, the perfor-
mance of various data processing combinations was quan-
tified. Whitening of the input data was found to be most
beneficial for accurate detection, with a slight benefit for the
combined whitening of inputs and residuals. For localiza-
tion of anomalies, whitening of residuals was preferred, and
the best performance was obtained using standardization
of the input data and whitening of the residuals using the
ZCA or ZCA-cor whitening matrix with a small additional
offset.

Index Terms— Anomaly detection, Autoencoder, Renew-
able generation, Whitening transformation

I. INTRODUCTION

MONITORING and control of large-scale engineering
systems require accurate measurements and dependable

communication infrastructure – and methods to process that
data for operational awareness. An important example is the
case of electrical power systems that are increasingly reliant
on variable renewable generation [1]. In this context, it is
important to detect anomalies in high-dimensional, highly vari-
able observations from a multitude of sensors. For example,
mild reductions in power generation caused by a wind turbine
component malfunction or physical disturbance. Insufficient
performance of anomaly detectors may threaten both the
economic dispatch and secure control of power systems [2].

In recent years, with the development of deep neural
network-related technologies, an unsupervised data-driven ap-
proach for anomaly detection has been proposed in the form
of an autoencoder-based classifier [3]. It considers anomaly
detection as a one-class classification task by learning patterns
of normal operating states. This is well-suited to the inherent
data imbalance in anomaly detection applications and the fast-
evolving power grid [4]. On this basis, techniques have been
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designed to detect anomalies in renewable energy systems
using autoencoder-based detectors. For example, in [5]–[7],
the authors have proposed an autoencoder neural network
to analyze anomalies of wind turbine components using
power generation or other SCADA data. However, the basic
autoencoder-based anomaly detector is based on thresholding
of residuals (reconstruction errors) using a Euclidean distance
metric. This does not account for significant dependencies
between measurements, such as the spatial and temporal corre-
lations of renewable resources [8]. The mismatch between the
detector design and features of the data could have a negative
impact on detection sensitivity and localization performance.

In view of this, some authors have proposed using the Ma-
halanobis distance has been utilized to measure the residuals
and thus acquire more accurate classification boundaries for
autoencoder-based anomaly detectors [9]. Authors of [10]–
[12] reported autoencoder-based wind turbine fault detectors
using the Mahalanobis distance. However, it has not yet been
investigated how the modified detection boundaries impact the
anomaly localization performance.

Apart from adjusting residuals, the correlated renewable
generation data, which are the input of autoencoder network,
can be decorrelated and standardized (i.e. whitened [13])
before fed into the autoencoder. This technique has been
considered in the field of computer vision, with a focus on
image and video data sets, for example, the image retrieval
[14] and object recognition [15]. However, there has been
little quantitative analysis of detection sensitivity and local-
ization performance improvement in the context of utilizing
an autoencoder-based detector with input data whitening [16].
Further, what is not yet clear is the impact of processing the
inputs and residuals together on the capacity of a detector.

This paper bridges these identified gaps by investigating
the impact of whitening input data and residuals and quanti-
fying the improvement of detection sensitivity and localization
performance using our proposed metrics. This is done in the
context of two high-dimensional energy system use cases. The
main contributions of this paper are listed below:

1) Comparative studies of different data processing meth-
ods, neural network configuration schemes, and whiten-
ing matrix selections are carried out, and their influences
on anomaly detection sensitivity and localization accu-
racy are quantified using a variety of metrics.

2) We propose a combined whitening of the input fea-
tures and of autoencoder residuals, which is shown to
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Fig. 1. The schematic of the autoencoder.

maximize detection sensitivity in two high-dimensional
use cases: one for spatially correlated renewable wind
power generation and one for electricity consumption
time series.

3) A combination of input feature standardization and
ZCA-cor- or ZCA-based residual whitening is shown
to enhance the visibility of anomalies and thus achieve
an outstanding localization performance of an anomaly
detector. The performance is further enhanced by a
tunable offset to the whitening transformation.

II. ANOMALY DETECTION MECHANISM

Anomaly detection is essentially a classification problem
with the objective of distinguishing anomalous data from data
that is considered ‘normal’ [17]. The most common approach
is to treat anomaly detection as a supervised learning task, e.g.
using SVMs (Support Vector Machines) [18] or deep neural
network classifiers [19]. However, supervised learning requires
a training data set with representative normal system opera-
tions and anomalies. Such data sets are in short supply because
of the rarity of anomalies, unwillingness to share data, and
evolving anomalies. Thus, it is difficult to learn a satisfactory
discriminator of ‘normal’ and ‘anomalous’ scenarios on this
basis [20].

Alternatively, anomaly detection can be approached as a
one-class classification problem (e.g. using a one-class SVM
approach [21]), where the detector is trained on examples
of only ‘normal’ operation data using an autoencoder-based
neural network. Observations with features that deviate sub-
stantially from those in the training data will be considered
anomalies. There are two main advantages to this approach.
First, the autoencoder-based mechanism avoids the need to
gather or generate anomalous data to create balanced data sets
for training the classifiers. Second, by focusing on what is
normal only, the proposed mechanism is naturally prepared
for unknown anomaly patterns.

A. Autoencoder Training
Autoencoders learn the most important features of the

training data (i.e. normal power system measurements) by
sending the measurements through an information bottleneck
while attempting to reconstruct the training data with min-
imal error [3]. The structure of the autoencoder algorithm

Fig. 2. Illustrative two-dimensional distributions of: (a) original resid-
uals, (b) whitened original residuals, (c) synthetic anomalous residuals
obtained by shifting, and (d) anomalous residuals whitened according
to the normal data. The residuals are classified as TN (True Negatives),
FP (False Positives), TP (True Positives), and FN (False Negatives) by
comparing with a 95% threshold (α=95) calculated on a validation set.

is depicted in Fig. 1. The dimension reduction process of
mapping the n-dimensional input data to the code in the
bottleneck layer B through hidden layers H1 to Hp is named
the encoder. Afterwards, the decoder decompresses the code
to n-dimensional output data. Weight matrices K and bias
vectors b are utilized in the encoding and decoding process as

x = g(Ke
p(. . . g(Ke

0z + be0) . . .) + bep) , (1a)

ẑ = g(Kd
p (. . . g(Kd

0x+ bd0) . . .) + bdp) , (1b)

where Ke
p and Kd

p denote weight matrices for encoding and
decoding process respectively, bep and bdp are bias vectors, and
g(·) represents a nonlinear element-wise activation function.
z ∈ Rn refers to the input data vector, x is the data in the
bottleneck layer B and vector ẑ ∈ Rn stands for the output.

The residual vector associated with a training observation
zi is given by ri = zi − ẑi. The corresponding reconstruction
error Ri is commonly expressed as the 2-norm of ri, and the
objective of the training process is to minimize the mean value
of all reconstruction errors Ri as

min
K, b

{
J := 1

k

k∑
i=1

‖ri‖2
}
, (2)

where k denotes the total number of the observations used for
the autoencoder training process.

B. Anomaly Classification
In this work, an anomaly is defined as an observation

that does not match the patterns inferred from data that are



considered normal. Specifically, the observation is in a region
of observation space that is estimated to contain less than a
predefined fraction of data – thereby limiting the false positive
rate of the assignment of observations to anomalies.

After the convergence of the objective J , the trained au-
toencoder is utilized to encode and decode the validation
data, resulting in reconstruction errors Rv , which are used to
determine an anomaly threshold ταv equal to the αth percentile
of Rv; for example, at the value where an ‘inflection point’
occurs in the error distribution [17]. Finally, the reconstruction
errors Re of the test data are compared with ταv to classify
states into normal (Re ≤ ταv ) and anomalous (Re > ταv ) data.

Geometrically, Ri denotes the Euclidean distance between
the input zi and reconstructed data ẑi. The ταv stands for the
maximum distance that a data point can be considered normal.
Notably, the spatial set that is not further than ταv is defined
as an ‘estimated normal data zone’. It is an n-ball in the space
of residuals, with radius ταv and centered on the origin.

C. Problem Formulation
Power system measurements exhibit spatial-temporal depen-

dencies. For example, due to geographic factors, the scale and
irradiance of renewable resources such as wind and solar are
spatially dependent within a given region [8]. Autoencoder-
based neural networks are trained to replicate these correlated
inputs on the output side with minimal reconstruction errors.

Dependencies in inputs may also lead to correlated residu-
als. An example in Fig. 2 shows two dimensions of the resid-
uals obtained in the case study of section IV. The residuals
of normal test data shown in Fig. 2 (a) are classified into TN
(True Negatives) and FP (False Positives) by the threshold
ταv . However, the assumption of a circular ‘estimated normal
data zone’ is not appropriate for this ellipsoidal distribution.
Fig. 2 (c) illustrates this with simulated anomalous data that
is obtained by shifting the residuals. Many clearly anomalous
points are within the normal circle and therefore not detected
(FN, False Negatives). This reduces the probability that an
actual anomaly is identified: the true positive rate (TPR),
also known as detection sensitivity. The illustration in two
dimensions also applies to residuals in higher dimensions.

III. DETECTOR ENHANCEMENTS

A. Data Whitening for Performance Improvement
In view of the elliptically distributed residuals and concomi-

tant errors in anomaly detection, whitening (also known as
sphering) the observations is a promising approach to improve
detection performance. By removing the correlations between
the residual components, the n-ball may better describe the
normal data distribution, and anomalies may be detected more
accurately. The potential effectiveness of this approach is
depicted in Fig. 2 (b,d). Whitening can be applied in three
different combinations of two approaches as:
• Whitening of the input data;
• Whitening of generated residuals;
• Combined whitening of the input data and residuals.

1) Whitening Transformations: We first summarize proper-
ties of the whitening transformation. Consider a random vector
Z = (z1, . . . , zn)T , with the (non-singular) covariance matrix
Cov(Z,Z) = Σ ∈ Rn×n. We define the (also non-singular)
whitening transformation matrix W ∈ Rn×n such that

V = (V1, . . . , Vn)T = WZ, (3)

where the elements of the random vector v are uncorrelated
and have unit variance: Cov(V, V ) = 1. We determine
constraints on W by expanding

Cov(V, V ) = E[WZ(WZ)T ]− E[WZ]E[(WZ)T ] (4)

= W
(
E[ZZT ]− E[Z]E[ZT ]

)
WT = WΣWT .

This implies the constraint WΣWT = 1. As W is invertible,
we multiply the W−1 and (WT )−1 from the left and right,
respectively, and find after inversion:

WTW = Σ−1. (5)

This does not determine the whitening matrix W uniquely.
Among the infinite possible options of whitening matrices W ,
a few are commonly used [22]. In this paper, four approaches
are studied: PCA, ZCA, Cholesky, and ZCA-cor [13].

The PCA whitening transformation is a widely used spher-
ing approach due to its close relation to principle component
analysis (PCA) [23]. It can be regarded as rescaling variances
of all dimensions to one after a PCA procedure that omits the
customary dimension reduction. The whitening matrix is

WPCA = Λ−1/2UT , (6)

where Λ ∈ Rn×n is a diagonal matrix with the eigenvalues of
covariance matrix Σ and the columns of U ∈ Rn×n are the
corresponding eigenvectors. It is closely related to the ZCA
approach, which uses U to transfer the PCA whitened data
back to the original coordinate system [13]:

WZCA = UΛ−1/2UT . (7)

ZCA whitening has been used in various applications, such as
a data pre-processing step for stochastic gradient decent [24]
and image classification with convolutional neural networks
[25]. The Cholesky whitening transformation is defined as

WChol = LT , (8)

where L ∈ Rn×n is a lower triangular matrix with positive
diagonal entries, obtained by Cholesky decomposition of the
precision matrix (inverse covariance matrix): Σ−1 = LLT .
The final sphering approach considered in this paper is ZCA-
cor whitening transformation [13]. It uses the whitening matrix

WZCA−cor = S−1/2V −1/2, (9)

where V ∈ Rn×n is the diagonal variance matrix and
S ∈ Rn×n denotes the correlation matrix (so that Σ =
V 1/2SV 1/2). The ZCA-cor whitening approach maximizes the
correlation of whitened and original components [13]. Unlike
WZCA, WZCA−cor is in general asymmetric.

In this paper, we consider both detection and localization
performance of the anomaly detector. As the whitening proce-
dure is transparent to the calculation of residual vectors (the
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Fig. 3. The proposed framework of data flow in the autoencoder neural
network-based anomaly detector.

squared vector is used), the particular choice of W mostly
affects the localization performance. It may also affect the
detection performance, albeit indirectly, if whitening is applied
to the input data, thus affecting the training of the autoencoder.

2) Input Whitening: The whitening transformation can be
utilized to remove correlations from the data used for training
and testing. First, this enables the autoencoder network to learn
from less redundant inputs, which is generally desirable [15].
But more importantly, we hypothesize that the reduction in the
input correlation may propagate to the residuals.

We consider a whitened input data point

zw = Wz(z − µz), (10)

with Wz , the z-space whitening matrix, computed from the
sample covariance of the training data z. The data is also
(optionally) centered on the data mean µz . The residual
rw ∈ Rn is defined as rw = zw − ẑw, where ẑw is the
reconstructed data point. Inverting the whitening procedure
gives ẑa = W−1

z ẑw + µz , which may be compared with the
original z. The reconstruction error of the whitened data ‖rw‖2
can be related to that of ra = z − ẑa as:

‖rw‖2 = ‖zw − ẑw‖2 = [(z − ẑa)TWT
z Wz(z − ẑa)]1/2

= [(z − ẑa)TΣ−1
z (z − ẑa)]1/2 , ‖ra‖Σ−1

z
. (11)

Compared with (2), by taking correlations of original inputs
into account, we are effectively measuring the Mahalanobis
distance [26] between z and ẑa instead of their standard
Euclidean length. Whitening of the input data thus affects
both the representation of the training data as well as the loss
function used during training.

3) Residual Whitening: In contrast with applying whitening
transformation before feeding data into the neural network,
residual whitening reshapes the distribution of residuals for a
given trained autoencoder. Concretely, the raw residual r =
[r1, . . . , rn]T is whitened as

rs = Wr(r − µr). (12)

Here, the whitening matrix Wr ∈ Rn×n is computed on
the sample covariance of residuals from the validation data,
because the training data set is used to train the autoencoder
itself. µr represents the mean of raw residuals in the validation
set, which should be approximately zero if the RMSE loss
function was used during training. Accordingly, the reconstruc-
tion error is given by

‖rs‖2 = [(r − µr)TΣ−1
r (r − µr)]1/2 , ‖r − µr‖Σ−1

r
. (13)

Slightly different from (11), the reconstruction error in (13)
denotes the Mahalanobis distance of a residual r from a set
of residuals with mean µr and covariance matrix Σr.

B. Anomaly Localization Metrics
In many scenarios, when a likely anomaly has been de-

tected, it is important to also identify which observation(s)
triggered the anomaly detector. They may indicate a compo-
nent malfunction or source of the physical disturbance. In the
case study that follows, we will show that with a well-chosen
whitening procedure, the values of the residual vector can be
used to pinpoint the anomaly: the highest absolute residuals
are the most likely locations of anomalies.

To quantify the dependability of the localization perfor-
mance, we propose three metrics. The first of these is the RMS
Ratio, which denotes the ratio of root mean square value of
anomalous dimensions to that of normal dimensions in residual
vectors. This is given by

RMS Ratio = 1
m

m∑
l=1

{
[

1
|A|

∑
j∈A

(r
(l)
j )2

] 1
2 /
[

1
|N |

∑
j∈N

(r
(l)
j )2

] 1
2 },

(14)

where r
(l)
j denotes the jth element of the residual of the

l-th test data point. A is the set of anomalous dimensions
(e.g., malfunctioning devices), and N represents the set of
non-anomalous dimensions. Moreover, m refers to the total
number of records in the test set. The RMS Ratio can be
used to estimate if the anomalous stand out on average. A
second, more stringent metric is introduced as well: Gap Ratio,
which measures the average ratio of the smallest anomalous
dimension to the largest normal dimension (absolute value). It
is defined as

Gap Ratio =
1

m

m∑
l=1

{min
j∈A
|r(l)
j |/max

j∈N
|r(l)
j |}. (15)

The third metric, OCR (Ordinal Consistency Rate), calculates
the proportion of samples for which the smallest absolute value
of an anomalous dimension exceeds the largest absolute value
of a non-anomalous dimension:

OCR =
1

m

m∑
l=1

1
minj∈A|r(l)j |>maxj∈N |r(l)j |

. (16)



C. Design of the Anomaly Detector
We integrate the anomaly detection mechanism and whiten-

ing schemes to give data processing options as well as explain
which data is used in different stages. The proposed data flow
and its transformation processes in the autoencoder neural
network-based anomaly detector are depicted in Fig. 3 with
the following five steps.

1) Data Partition: Given the historical data set X , the first
step is to divide observations into training, validation, and test
data set as Xt, Xv , and Xe with a specific ratio.

2) Input Pre-processing: In this step, statistics of the train-
ing data (mean, range, covariance) are computed, and these
values are used for input processing of training, validation, and
test data according to the selected method, e.g. input whitening
shown in (10).

3) Training and Reconstruction: The weight matrices K
and bias vectors b are updated iteratively to minimize the
reconstruction loss in (2). Afterwards, the trained autoencoder
neural network is utilized to reconstruct the validation and test
set to X̂ ′v and X̂ ′e. Then, the corresponding residual sets r′v
and r′e are calculated, such as rw in (11).

4) Residual Post-processing: If residual whitening is em-
ployed, the validation residuals are used to compute the
whitening transformation. After executing residual whitening
transformation shown in (12), the reconstruction errors of the
validation set R̃v and test set R̃e are calculated as (13).

5) Detection Performance Evaluation: The anomaly thresh-
old τ̃αv is obtained as a quantile of the reconstruction errors R̃v ,
corresponding to the desired true negative rate α%. The test
data are classified by comparing reconstructions R̃e with the
threshold τ̃αv . Consequently, the performance of the anomaly
detector is assessed by calculating the evaluation metrics based
on the predicted normal, anomalous states and the actual states.

IV. CASE STUDY: SNAPSHOT DATA

In this section, the impacts of different data processing
options, neural network configurations, and whitening matrix
selections on anomaly detection and localization capacity of
an autoencoder-based detector were investigated. To do so,
we conducted a case study on the power generation from
distributed wind farms. Although introduced anomalies are
synthetic, the wind farm output is based on reanalysis data of
historical wind speeds. This use of maximally realistic high-
dimensional data ensures that the data won’t be easily com-
pressed into a low-dimensional manifold by an autoencoder.

To do so, we first described the process of modelling
normal data patterns and then formulated anomalous scenarios.
For these scenarios, we made anomaly detection performance
comparisons by implementing various combinations of data
transformations including whitening. Next, anomaly locating
capacity evaluation was conducted by comparing four whiten-
ing transformations: PCA, Cholesky, ZCA, and ZCA-cor.

A. Experiment Scenario Formulation
Renewable power generation from spatially distributed wind

farms is an increasingly relevant source of energy. The power
output of each wind farm is highly variable due to variations
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Fig. 4. The correlation coefficient matrices of normal testing residuals
r̃e when utilizing four data processing combinations. The dimensions
shown correspond to nine virtual wind farms (B64 is utilized).

in wind speed, but this may obscure other factors causing
reduced performance. Given this, experiments were conducted
to test if our proposed mechanism can detect and localize
anomalies in the power output of wind farms with satisfactory
capacity. Notably, without knowing any model-related infor-
mation about wind farms and relying on the neural network-
based data-driven methodology only, our proposed anomaly
detection mechanism was trained on historical operation data
and tested on both normal and anomalous scenarios. In this
paper, we generated anomalous scenarios as reductions in
power output of one or more wind farms. These could reflect
unexpected malfunctions, disturbances, unscheduled outages,
or unreported maintenance activities (from the perspective of
system operators).

A realistic wind power data set was constructed as follows.
We virtually placed a 100MW wind farm at each center of
the 99 municipalities located in the North and South Holland
provinces of the Netherlands. The wind power output was
simulated on the basis of historical wind speeds at the 99 lo-
cations, obtained by MERRA-2 reanalysis and available from
renewables.ninja [27]. After obtaining the historical wind data
[28], the associated generated power outputs were calculated
as described in [29]. For the purpose of this study, observations
were snapshots of instantaneous power production. Ultimately,
the whole generated data set X ∈ R87648×99, which includes
10 years’ (2009-2018) hourly outputs of 99 wind farms, was
divided into the training set Xt, validation set Xv and test set
Xe with the proportion of 6, 2, and 2 years.

The autoencoder encoded and decoded the 99-dimensional
data from the input to output layer. Both encoder and decoder
were fully connected networks with 3 hidden layers with 200
neurons each, connected to a bottleneck layer with variable



size. The bottleneck size is indicated as Bn, where n is the
number of neurons in the bottleneck layer. The ReLU acti-
vation function was used, and the Adam Optimizer [30] was
utilized to iteratively optimize the value of weight matrices K
and bias vectors b. In this research, 5 × 103 training epochs
were used, and the learning rate for training was 5 × 10−5.
Training and testing of the autoencoder were conducted using
tensorflow.

For a comparative study of anomaly detection and local-
ization performance, we made use of different combinations
of input pre-processing methods and residual post-processing.
The combinations, denoted as Pxy , are listed in Table. I.

TABLE I
DATA PROCESSING METHOD COMBINATIONS.

Input Pre-processing Residual Post-processing
PNN None None
PSN Standardization None
PWN Whitening None
PNW None Whitening
PSW Standardization Whitening
PWW Whitening Whitening

B. Impact of Whitening Transformation
Fig. 4 depicts the correlation coefficients of the testing

residuals r̃e for 9 out of the 99 dimensions, for a variety of data
processing methods. When the input data is standardized, but
no whitening is performed (PSN ), high correlations among
different dimensions are visible, which implies ‘elliptically’
distributed residuals according to the analysis in section II-C.

As expected, whitening effectively reduces these correla-
tions. Whitening of the input data (PWN ) drastically reduces
correlations between the residuals. Correlations are slightly
lower still when whitening is applied directly to the residuals
(PSW ). Note that the pairwise correlations are not zero due
to differences between the validation set (used to determine
the post-whitening matrix) and the test set. Finally, applying
whitening on the inputs and the outputs (PWW ) produces
similarly small correlations.

C. Anomaly Detection Performance Evaluation
Both the processing methods (Pxy) and the autoencoder

configuration (Bx) influence the sensitivity of anomaly detec-
tion. This impact will be quantified in this section. For these
tests, anomalies were generated by modifying the test data as
follows. For each data point, we randomly selected one wind
farm out of 99 and reduced its power output by a given amount
(the anomaly magnitude, abbrev. am). This approach yields an
anomalous test set consisting of 17,544 non-anomalous data
points and an equal number of anomalous data points.

1) Receiver Operating Characteristic Curves: Receiver Op-
erating Characteristics (ROCs) and the corresponding Area
Under the Curve (AUC) were used to quantify the sensitivity
and specificity of anomaly detection, as a function of the
autoencoder structure, data processing method, and anomaly

magnitude. ROC curves were constructed by varying the
threshold ταv . For all cases, ZCA was selected as the whitening
matrix, and an anomaly magnitude of 10% was used.

For the first experiment, we used default processing PSN :
standardizing the input data and detecting anomalies from
unprocessed residuals. Comparing the performance of all
layer dimension configurations Bx, we can observe in Fig. 5
(a) that autoencoder networks configured as B32, B64 and
B96 have better detection performance. Specifically, at each
false positive rate, the true positive rate (sensitivity) of these
detectors are higher than others’. Accordingly, they also have
larger AUC. This indicates that optimal detection is achieved
with fairly wide autoencoders. The configuration B64 was used
for all following experiments.

A comparison of the anomaly detection performance of
all data processing approaches Pxy is shown in Fig. 5(b).
We can observe that, i) detectors equipped with whitening
transformation (PWN , PNW , PSW , and PWW ) have higher
anomaly detection sensitivity than the others; ii) performing
whitening only on the inputs (PWN and PWW ) renders higher
detection sensitivity than whitening approaches performed
to the residuals (PNW and PSW ); iii) the detector using
combined whitening (PWW ) slightly outperforms the detector
just utilizing input whitening (PWN ). It can be concluded that
the combined whitening approach PWW is the best choice to
improve overall anomaly detection sensitivity.

Moreover, we investigated the ability to detect anomalies
of various magnitudes, using the selected processing strategy
PWW . Fig. 5 (c) shows that, as the anomaly rate increases
from 1% to 30%, the ROC curves and AUC improve, reaching
very high levels from 10%.

TABLE II
DETECTION PERFORMANCE COMPARISON BY MULTIPLE METRICS (α =

99, ANOMALY MAGNITUDE = 10% AND B64 IS UTILIZED).

Processing method TNR TPR PPV F1-score
PNN 98.89% 56.26% 98.07% 71.50%
PSN 98.77% 40.58% 97.06% 57.23%
PWN 98.98% 84.06% 98.80% 90.83%
PNW 98.86% 71.81% 98.44% 83.04%
PSW 98.80% 66.52% 98.22% 79.32%
PWW 98.88% 85.14% 98.70% 91.42%

2) Detection Performance Evaluation by Multiple Metrics : In
addition to the detection sensitivity (true positive rate; TPR),
we evaluated the performance of the anomaly detector by
multiple metrics, namely specificity (TNR), precision (PPV),
and F1-score. Interested readers can refer to [31] for a detailed
introduction to the metrics. For all cases, we used an anomaly
magnitude of 10%, α = 99, and layer configuration B64.
The experimental results are shown in Table. II. In all cases,
the TNR is close to 99%, consistent with the choice of the
threshold α = 99. Similarly, the PPV scores are high across
all processing methods, but a closer look at the TPR and F1

metrics shows that - perhaps surprisingly - the PSN processing
scheme is least dependable, by a large margin. The schemes
using whitening of input data outperform all others, with a
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Fig. 5. Test set receiver operating characteristics of spatial data, using different configurations (Bx), data processing methods (Pxy), and anomaly
magnitudes.

slight edge for the combined whitening procedure (PWW ) over
the pre-whitening only procedure (PWN ).

To investigate the stability of the stochastic training process,
model training was performed 15 times, and the variability of
the sensitivity was monitored (results not shown). Whitening
at the pre-processing stage resulted in higher sensitivity and
a narrower range of results.

TABLE III
DETECTION PERFORMANCE COMPARISON BY DIFFERENT ANOMALY

TYPES (α = 99, PWW AND B64 ARE UTILIZED).

Anomaly Types TNR TPR PPV F1-score
1× 10% 98.88% 85.14% 98.70% 91.42%
2× 5% 98.88% 80.20% 98.62% 88.46%
5× 2% 98.88% 67.84% 98.38% 80.30%
10× 1% 98.88% 53.72% 97.96% 69.39%
1× 30% 98.88% 95.35% 98.84% 97.06%
2× 15% 98.88% 95.06% 98.84% 96.91%
5× 6% 98.88% 91.95% 98.80% 95.25%
10× 3% 98.88% 87.92% 97.74% 93.02%

3) Detection Performance of Different Anomaly Types: In
the next experiment, the performance of detecting different
anomaly types was investigated. The total anomaly magnitude
(i.e. power reduction) was fixed at 10% and 30%, respectively,
but distributed over 1, 2, 5 or 10 observations. The experimen-
tal results are shown in Table. III. Under each total anomaly
magnitude, more concentrated anomalies (i.e., 1 × 10% and
1×30%) render higher TPR and F1-scores, but these decrease
for more diffuse anomalies, as might be expected. TNR and
PPV remain high for all anomaly patterns.

D. Anomaly Localization Performance Evaluation
In addition to quantifying the ability to detect anomalies

(a binary classification), we next investigated the ability to
localize the source of an anomaly, and how this depends on
the configuration of the detector.
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Fig. 6. Illustrative example that depicts the effect of different whitening
approaches on anomaly locating capacity (anomaly magnitude = 5%;
PSN , PSW , and B64 are utilized).
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Fig. 7. Root mean square (RMS) ratios of the anomalous to normal di-
mensions for data processing/whitening combinations (B64 is utilized).

1) Visual Comparison of Localization Performance: We first
considered an illustrative example of anomaly localization, in
which the output of three wind farms (numbers 41, 52, and
76) was reduced by 5%. The input data is shown in Fig. 6 (top
panel), where the anomalous locations are indicated in yellow.
Looking at the residuals of standardized data (PSN , middle



TABLE IV
LOCALIZATION CAPACITIES OF USING DIFFERENT DATA PROCESSING

METHODS (ANOMALY MAGNITUDE = 5% AND B64 IS UTILIZED).

Processing
method

Whitening
matrix

RMS
Ratio

Gap
Ratio OCR

PNN / 7.32 1.60 73.18%
PSN / 8.05 1.97 78.48%
PWN Cholesky 2.98 0.37 7.17%
PWN ZCA 3.98 0.68 23.40%
PWN ZCA-cor 3.82 0.61 18.22%
PNW Cholesky 6.55 1.39 68.04%
PNW ZCA 7.81 1.65 75.98%
PNW ZCA-cor 7.81 1.65 75.74%
PSW Cholesky 8.58 1.59 71.78%
PSW ZCA 9.68 1.98 82.23%
PSW ZCA-cor 9.62 1.97 82.60%
PWW Cholesky 2.65 0.30 2.44%
PWW ZCA 3.90 0.65 20.52%
PWW ZCA-cor 3.82 0.61 18.27%
PSW ZCA - c 9.72 2.07 84.65%
PSW ZCA-cor - c 9.67 2.06 85.08%
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Fig. 8. Localization performance as a function of whitening offset c.

panel), it can be seen that the residuals of the three anomalous
dimensions stand out. In the bottom panel, we can observe that
the four whitening approaches affect the residual signals in
different ways. PCA whitening mixes all coordinates and fully
obscures the connection between the original perturbations
and residuals. As a result, it will not be considered in the
follow-up analysis. In contrast, the Cholesky, ZCA, and ZCA-
cor whitened residuals all have peaks that are consistent with
the actual anomalous dimensions, but the Cholesky method
also produces residuals in non-anomalous locations (e.g., a
peak at dimension number 40). This result is consistent with
the fact that ZCA whitening maximizes the average cross-
covariance between the original and whitened data and ZCA-
cor maximizes their cross-correlation [13].

2) Statistical Localization Performance Comparison: For
each point in the test set, we randomly selected 3 out of
99 wind farms and applied power reductions to generate
anomalous test vectors, resulting in test sets of 17544 data
points for each anomaly rate. Fig. 7 depicts the RMS Ratio
for various data processing schemes, as a function of anomaly
magnitude, and Table. IV shows numerical results for all three
anomaly metrics for a fixed anomaly magnitude of 5%.

The most striking observation is that methods that per-
form whitening at the pre-processing stage (PWx) scored
significantly worse on all localization metrics. Apparently,

mixing of features before encoding helps to improve detection
sensitivity (previous section), but is detrimental to localization
performance. Moreover, for any data processing combination,
both ZCA processing schemes scored higher than the Cholesky
whitening scheme, and the best scores were obtained when the
ZCA and ZCA-cor schemes are used for post-processing, in
combination with standardization for pre-processing (PSW ).
Here, ZCA scored very slightly higher on the RMS ratio and
gap ratio metrics (typical separation), and ZCA-cor attained
the highest scores on the OCR metric (ordering).

Finally, an additional enhancement of the method was
introduced. The residual whitening transformation (12) mixes
signals between dimensions. This may cause a peak (positive
or negative) in one or more dimensions to affect the average
value of other dimensions. In order to better separate this
signal from the background, we applied a constant offset to
the whitening matrix (12) as follows:

rs(c) = (Wr − c1)r. (17)

Here, 1 is a matrix of ones and c is a constant to be defined,
so that a multiple of the sum-of-residual values (

∑
i ri) is

subtracted from the whitened feature vector. The change of
localization performance as a function of c is shown in Fig. 8.
An overall improvement is obtained for values larger than zero,
although RMS ratio decreases after an initial increase. Results
for the value c = 5 are included in Table. IV.

V. CASE STUDY: TIME SERIES DATA

A. Experiment Scenario Formulation
Apart from detecting anomalies in data ‘snapshots’ that cor-

respond to spatially distributed locations, we further validate
the anomaly detection performance of the whitening-enhanced
autoencoder using a time-series data set. This data set contains
half-hourly load profiles of 4,173 customers in London col-
lected between 2011 and 2014 [32]. 4,000 customers were
randomly selected, and data from 2013 (the most complete
year) were used to create daily load profiles for groups of
100 customers. The resulting data set X ∈ R14600×48 was
randomly divided into training, validation, and testing sets
in blocks of one week with the proportion of 2:1:1. The
dimensions of hidden and bottleneck layers were set as 96 and
32, respectively. The batch size was 16, the learning rate was
1 × 10−5, and 350 training epochs were used. Other settings
were kept the same as those in Section IV-A. Anomalous load
profiles were created by modifying the test set. Specifically,
3 randomly selected data points out of each 48-dimensional
load profile were reduced by a certain amount.

B. Anomaly Detection Performance
Fig. 9(a) compares the results obtained with different

whitening methods, for a given anomaly magnitude of 30%
(comparable with Fig. 5(b)). It is evident that also in this
case, whitening-enhanced autoencoders (PNW , PWN , PSW ,
and PWW ) outperform non-whitening-enhanced ones (PNN
and PSN ). A detector equipped with combined whitening
(PWW ) has higher anomaly detection sensitivity than detectors
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Fig. 9. Test set receiver operating characteristics of time series data us-
ing different data processing methods (Pxy) and anomaly magnitudes.

equipped with signal whitening transformation (PNW , PSW ,
PWN ).

In addition, the detection performance of the PWW method
was investigated for different anomaly magnitudes. As ex-
pected, and shown in Fig. 9(b), the ROC curves and AUC
improve as the anomaly magnitudes increase. When compar-
ing the results with Fig 5(c) for similar signal reductions,
it is notable that detection performance is reduced, despite
reductions occurring at three observed data points simultane-
ously instead of one. This is due to the larger stochasticity of
electricity demand profiles compared to the highly correlated
wind power snapshots, making it harder to distinguish normal
and anomalous data, particularly at low anomaly magnitudes.

VI. CONCLUSION

Autoencoder neural networks are a powerful tool for the de-
tection of unknown anomalies. A threshold for the (Euclidean)
length of the residuals is used to identify anomalous states of
a system. In this paper, we investigated how whitening-based
decorrelation of the input features and residuals can improve
the performance of the anomaly detector, for use cases of wind
power generation at 99 different locations and daily electricity
load profiles. Whitening of the input data was found to be most
beneficial for detection performance, across multiple metrics,
and a small further enhancement was obtained when both input
data and the residuals were whitened (combined whitening).
However, input whitening was found to reduce the ability to
locate the source of anomalies. Three metrics were formulated
to quantify this ability, and the best performance was obtained
using standardization of the input data and whitening of the
residuals using the ZCA or ZCA-cor whitening matrix with
a small offset. In future work, we aim to extend the method
to analyze spatial-temporal signatures and include contextual
information. Further refinement of the neural network itself is
also a promising research direction: applying batch normaliza-
tion or modifying the objective function used during training
may indirectly improve detection performance by smoothing
the distribution of values of the non-anomalous data within
the latent space or hidden network layers.
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Tekniska Högskola, Gothenburg, Sweden, 2019.

[12] Y. Cui, P. Bangalore, and L. B. Tjernberg, “An anomaly detection
approach based on machine learning and SCADA data for condition
monitoring of wind turbines,” in 2018 IEEE International Conference
on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE,
2018, pp. 1–6.

[13] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decor-
relation,” The American Statistician, vol. 72, no. 4, pp. 309–314, 2018.
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