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ABSTRACT The Digital Twins (DT) have emerged as the technology that provides capabilities to simulate 

and analyze cyber-physical systems' behaviors using digital replicas. This is achieved through high-fidelity 

digital models, bi-directional communication and (near) real-time data exchange between physical real-world 

systems and DTs. Despite its capabilities of facilitating real-time monitoring, optimization, and predicting 

system performance, effectively leveraging DT for power system applications requires integrating data from 

heterogeneous sources and addressing various data related aspects. These include data modeling, exchange 

and interoperability. One promising concept to address these aspects is that of data federation which promotes 

interoperability, allowing DTs to operate autonomously, yet interact seamlessly. While various studies in 

literature have addressed DT applications, technologies, and challenges, a comprehensive review on the data 

federation aspects within power systems still needs to be investigated. This research seeks to bridge this gap 

by providing an in-depth review of DT practices in academia and industry, functional and non-functional 

requirements, and enabling technologies, with emphasis on data federation. Its role in enhancing system-wide 

interoperability in the power system, along with associated challenges are summarized and discussed. 

INDEX TERMS Digital Twin, Power Systems, Data Federation, Digital Technologies, Data 

Interoperability

I. INTRODUCTION 

 Digitalization is revolutionizing the energy sector, 

enhancing efficiency, and offering low-carbon energy 

solutions. However, the energy transition in modern power 

systems comes with its challenges. The growth of intermittent 

and decentralized renewable sources of energy and the 

interconnection amongst autonomous and distributed 

constituent systems in the power system have increased the 

complexity and uncertainty of power system operations [1]. 

This necessitates a solution that can facilitate and coordinate 

the interplay and collaboration between constituent systems 

and analyse and observe uncertain and dynamic power system 

behaviors. The Digital Twin (DT) concept is an approach that 

capture the intricate behaviours of physical systems through 

high-fidelity analytical models [1]. A DT is a unique 

combination of the physical and digital worlds. The physical 

world constitutes the operational technologies such as sensors, 

and actuators, while the virtual digital space hosts digital 

replicas of these physical assets. This can simulate different 

conditions, and configurations and take decisions regarding 

the physical space via (live) data and information flows 

between them [2], [3]. 

 DTs allows for integrating data across power system 

components, for example, to predict system behaviours, and 

simulate interactions among these constituent systems to 

anticipate potential events. These capabilities are crucial in 

dynamic and uncertain environments, enabling real-time 

monitoring, data-driven optimization, and analysis, and 

ensuring pre-emptive measures for power system reliability 

and resilience. The DT has drawn significant attention from 

researchers in industry and academia. Its widespread adoption 

across various industries, including aviation, manufacturing 

and the energy domain shows its credibility and potential. DT 

plays a vital role in a variety of applications and use cases of 
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future power systems, including power generation and 

distribution, energy storage, project planning, microgrids, 

electric vehicles, and renewable energy generation systems [4], 

[5]. The power systems digital transformation through DTs 

represents a significant leap forward in optimizing, managing, 

and securing the power systems [6], [2]. 

A. MOTIVATION 

 While DT brings various capabilities, it is necessary to 

effectively utilize its full potential in power systems to address 

the challenges such as modelling and management of data, 

computational requirements, and interoperability of complex 

interconnected and heterogeneous power systems [7],[8]. DT 

introduces requirements, such as the need for interoperable 

data and data model exchanges to enhance system-wide 

interoperability. Thus, a robust foundation in data federation 

becomes a prerequisite and the core for developing an 

effective DT. Data federation is an approach that virtually 

integrates and manages data from heterogenous sources into a 

common federated query engine. It integrates data from 

diverse sources like relational databases, structured files, 

through a unified schema and allows for streamlining access 

to distributed data as a single source. 

 The federated concept has been applied for a few reasons, 

including enhanced system interoperability, collaboration, and 

synchronization, but also for comprehensive and real-time 

decision-making while addressing the integration challenges 

of collaborative DTs [9]. The federated concept allows for a 

scalable and flexible architecture where individual DTs, each 

modelling specific assets or processes within the power grid, 

operate autonomously, yet can interact seamlessly with one 

another. This interconnectedness is essential for simulating 

complex, system-wide scenarios, ranging from monitoring to 

emergency response strategies, with high fidelity and real-

time data exchange [2]. Through these interactions, DTs can 

collaborate, share data and insights that enhance decision-

making processes, and optimize power system performance. 

B. RELATED SURVEYS AND CONTRIBUTIONS 

 The literature in recent years has investigated and 

reviewed different dimensions of the DT, including 

challenges, requirements, supporting technologies and 

applications in general. However, only a few covered the 

data federation aspects of DTs in power systems. Sifat et al. 

[8] underscored that the design of DT should consider Cyber-

Physical Systems (CPS) requirements such as security, 

scalability, and confidentiality while also reviewing the 

challenges in data communication, protocols, power grid 

integration, and cybersecurity. Similarly, Chen et al. [4] 

studied data privacy, cybersecurity, and data and model 

fusion challenges and how DT can enhance the control, 

design, and maintenance of Power Electronics Enhanced 

Cyber-Physical Systems (PEECSs). In [10], the survey was 

provided by exploring DT applications and functions and 

discussing DT challenges in power systems. Another survey 

in [11] emphasized the non-functional requirements for DT 

operations and presented different use case applications of 

DT for electrical energy.  

 In addition, Jeong et al. [12] defined a DT as an 

intelligent technology platform that synchronizes physical 

entities e.g., spaces, objects, processes and systems. 

Palensky et al. [1] examined DT applications and use cases 

in future power systems and their supportive functions. 

Brosinsky et al. [2] thoroughly investigated the importance 

of data federation and its required components to prevent 

data silos in power system DTs, along with discussing the 

non-functional requirements DTs should meet. The authors 

of [13] reviewed DT challenges, such as data ownership, 

governance, security, and fidelity, alongside social and 

ethical concerns and provided insights on the role of DT in 

smart factories, cities, and buildings. In addition, Fuller et al. 

[14] reviewed DT and data analytic challenges, detailing the 

technologies and functional blocks necessary for digital 

twinning and its application in healthcare, manufacturing, 

and smart cities. Zhang et al. [15] focused on the data 

requirements, principles, and technologies that can satisfy 

these requirements.  

 Existing studies have discussed different aspects, from 

DTs’ applications and operational requirements to the 

significance of data integration. However, a comprehensive 

review is needed that provides the functional, non-functional, 

and technology requirements, case studies on DT 

implementation using digital technologies, current practices 

of DT in both academia and industry, in addition to data 

federation requirements, and challenges of power systems 

DT in detail. This gap identified in the existing literature 

forms the basis for our review paper's contributions. This 

paper comprehensively investigates several critical aspects 

related to DT in the energy domain.  

• Firstly, we introduce an extensive overview of different 

DT definitions and concepts found in previous studies. 

Then we examine its applications across different areas 

within the power system context. This overview 

identifies trends in the existing research, providing a 

foundation to assimilate the state-of-the-art DT 

technology. 

• Secondly, we investigate the specific requirements 

necessary for implementing DTs within power systems. 

This involves a careful examination of the technical and 

functional needs that must be met to successfully 

deploy DT in this context. We also explore the enabling 

digital technologies that support digital twinning, such 

as Internet of Things (IoT), Artificial Intelligence (AI), 

and Machine Learning (ML), and how these digital 

technologies integrate with power systems DT to 

enhance performance, reliability, and efficiency. These 

findings can provide implications on current trends and 

advancements in those technologies that are advancing 

DT capabilities and further research and development. 

• Finally, we discuss the critical aspects of data federation 

within power system DTs. This includes a 
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comprehensive investigation of the various data types, 

attributes, and requirements necessary for effective 

digital twinning. We outline the principles and 

components essential for data modelling, which ensure 

that the interoperability standards are met. Moreover, 

we identify and discuss the challenges associated with 

data federation, including data integration, governance, 

management, standardization, and security issues, and 

propose potential solutions to overcome these 

encumbrances. 

II. LITERATURE REVIEW 

A. RESEARCH OBJECTIVES AND PAPER STRUCTURE 

A thorough review of the literature was conducted to 

identify the state-of-the-art research. The review's objectives 

were defined to guide the review process and identify relevant 

studies and findings. 

Research Objectives  

As DTs gain increasing relevance in various fields, 

reviewing how DT is defined in the literature is imperative. 

Understanding its conceptual underpinnings and potential 

applications is also crucial, especially as DT technology has 

been broadly used in the energy sector. Therefore, examining 

current academic and industry practices documented in the 

literature is necessary to specify trends, use cases, and 

potential. Furthermore, identifying functional and non-

functional requirements is vital to develop effective DTs for 

power systems, as they are essential for creating robust and 

efficient models. In addition, since digital technologies can 

unlock new capabilities for DTs, exploring how these 

technologies enable enhanced performance and innovation is 

essential. While data integration is an important element for 

the success of DTs in power systems, identifying the types 

of data and their attributes required for effective data 

federation is of utmost importance. To ensure the seamless 

operation of DTs, it is also necessary to define specific data 

requirements, principles, and components. Given the 

complexity of integrating diverse systems, understanding 

how to ensure interoperability for data federation in 

heterogeneous power system DTs is indispensable for 

achieving cohesive and functional integration. Finally, 

because DT data federation in power systems faces various 

challenges, it is crucial to identify and address these barriers 

to facilitate smooth implementation and operation. 

Consequently, in this study, we limit our focus to the topics 

below: 

1. Definition, concepts and characteristics of DTs 

based on the literature, 

2. Current state-of-the-art practices and applications 

of DTs in the energy industry and academia, 

3. Functional and non-functional requirements 

necessary to develop DTs of power systems, 

4. Role of digital technologies for power system DTs 

and case studies, 

5. Data requirements, principles, and components for 

data federation of DTs, 

6. Data types and attributes for data federation of 

power systems DTs, 

7. Interoperability standards, its adoption in real-

world applications and associated challenges for 

power system DT data federation. 

 
B. CLASSIFICATION OF THE STATE-OF-THE-ART  
 This advanced review paper includes articles published in 

three digital libraries, i.e., IEEE Xplore, Science Direct, and 

Digital Twin. We limited the article category to journals, 

magazines, and book chapters, and the period from 2002, 

when the concept of DT concept was first proposed, until the 

first quarter of 2024 (Q1 2024). To find relevant information 
regarding the DT adoption in the energy industry, we 

searched on Google News using the search queries. This 

survey uses relevant Text Search (TS) queries based on the 

search objectives to find relevant articles from the digital 

libraries and Google News. Table 1 summarizes the text 

query used for this survey. 

 This comprehensive review is categorized into three 

sections as illustrated in Figure 1. Furthermore, to 

comprehensively understand the current research landscape, 

we analysed a research gap as presented in Table II. It 

compares existing survey and review articles relevant to DTs 

in the power system domain across five categories. These 

categories were selected based on their foundational role in 

FIGURE 1. Summary of review paper structure and coverage. 
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developing robust, interoperable, and scalable DTs for power 

systems. 

• Applications & Use Cases: This dimension evaluates 

how comprehensively each study addresses DT 

applications in power systems. Articles such as [1], 

[10] and [13] provide a high-level discussion of 

potential applications in power systems. 

• Functional & Non-functional Requirements: DT 

systems must satisfy various requirements to be 

viable in power systems, such as interoperability and 

cybersecurity. This category assesses the degree to 

which prior works define or formalize such 

requirements. 

• Enabling Technologies are discussed in most papers 

to a moderate extent (e.g., [4], [13], [14]), mentioning 

IoT, AI, or cloud computing. However, the 

interconnection between these technologies and 

integration with DT implementations in power 

systems remains underrepresented in prior work. We 

evaluate how these technologies are addressed and 

contextualized within the power system landscape. 

• Data Federation Requirements: As modern power 

systems become increasingly decentralized and data-

intensive, federated architectures are essential for 

unifying diverse data sources. The most significant 

gap appears in this aspect. While [2] and [14] studied 

these topics, their focus remains high-level and not 

specific to power system context. Data principles 

were explored in [15], but there was limited 

discussion on federation frameworks and 

standardization protocols. 

• Data Federation Challenges: Effective 

implementation of data federation in DTs can be 

constrained by interoperability limitations, lack of 

standardization, and governance issues. We examine 

which issues are addressed in existing studies and to 

what extent. 

Table II shows that related prior studies offer partial or 

minimal coverage of these last two categories, particularly 

data federation requirements, and challenges, which are 

crucial for scalable and interoperable DT systems. Our study, 

in contrast, provides high and in-depth coverage across all 

five dimensions, with a particular focus on the 

underrepresented area of data federation. It discusses data 

types and modelling attributes relevant to power system DTs 

and highlights practical implementation challenges of 

industrial interoperability standards, data governance issues, 

and security considerations. 

III. REVIEW OF DIGITAL TWIN CONCEPTS AND 

CURRENT PRACTICES IN ENERGY INDUSTRY 

 This section presents the different DT definitions in the 

literature and other similar concepts surrounding DT, along 

with DT adoptions in the energy industry and academic 

research. 

A. DIGITAL TWIN DEFINITION 

 In 2002, Grieves first proposed the term "digital twin" in 

to describe a new concept in product life cycle management. 

Nowadays, much of the literature has used distinct 

definitions of DTs [16]. A DT is a virtual replica of a 

physical entity. It includes the environment supporting it, 

which requires a standardized architecture, data format, 

communication protocol and end-to-end connectivity, 

facilitating interaction between the virtual replica and 

physical counterpart [17]. Grieves and Vickers define a DT 

using the terms twin, prototype, instance [16], [18]. The twin 

is the virtual representation of the real subject that accurately 

depicts it. The prototype is the description that contains 

sufficient details to reproduce the twin. The subject itself is 

an instance. Jafari et al. [10] denote the DT concept as a 

digital replica of a physical system that can reflect its 

physical behaviour through interaction in real-time and 

bidirectional data.  

 
B. ALTERNATIVE CONCEPTS OF DIGITAL TWIN 

 There are various misconceptions about DTs, and 

clarifying these misconceptions is essential for 

understanding and leveraging DT technology. In that regard, 

Fuller et al. [14] addressed various concepts surrounding 

DTs, differentiating three concepts: DT, digital shadow, and 

digital model. 
"Digital Model" is a static, digital depiction of an existing 

or conceptual physical entity. It lacks real-time data 

exchange with its physical model—for example, product 

design and buildings design. When automated data 

synchronization is absent, modifications made to the 

physical entity are not reflected in the digital model and vice 

versa. This concept is synonymous with the "modelling and 

simulation" concept, described by Wagner et al. [7], which 

provides a framework for exploring object behavior without 

direct interaction. "Modelling and Simulation" includes 

digitally replicating a physical asset to study its behavior 

without directly experimenting with the actual object. 

Developing a model is to capture essential features of the 

physical entity for targeted analysis and study the specific 

scenario's behavior and/or performance of the actual object 

through relevant attributes and relationships. In contrast to 

DT, models are created to emulate or simulate the object but 

focus on relevant aspects for the investigations at hand. 

"Snapshot Twin" is another term utilized for simulations, 

and it can capture and isolate data at a particular moment for 

subsequent analysis. It is helpful in "what-if" scenarios, real-

time simulations, and virtual reality applications. It also 

maintains all data regard to the physical entity within the DT 

database, ensuring that the snapshot and its results remain 

integrated within the DT ecosystem. The "Digital Shadow" 

concept represents a digital illustration of a real physical 

object characterized by a uni-directional data flow from the 

physical to the digital model. Adjustments made in the 

physical object updates only the digital object. Unlike 

Snapshot Twin and Digital Shadow, "Digital Twin" provides 

a dynamic, bidirectional data exchange and synchronization 

between a physical and digital object. Modifications and 
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adjustments in the actual physical space immediately update 

the digital version, and vice versa.  

Similarly, "Linked DT" is a comprehensive digital 

representation that is technically feasible and applicable to 

various experimental scenarios. Simulations in this context 

are conducted separately from the physical entity, focusing 

on how the object might respond to specific conditions or 

inputs. Facilitating direct and two-way communication as 

well as real-time updates will allow for close alignment 

between the DT and its physical counterpart. In essence, a 

DT in the energy domain is a virtual representation of the 

actual physical entity (such as power grid assets, power 

system operation processes) that can mirror its state, 

behaviour and performance in the virtual space. Physical 

entity and DT convergence occurs as often as needed, with 

an appropriate rate of synchronization and bi-directional data 

communication. 

 

TABLE I 
TEXT SEARCH QUERIES TO INVESTIGATE RELATED LITERATURE ON POWER SYSTEM DIGITAL TWIN AND DATA FEDERATION IN DIGITAL TWIN AND ITS 

CHALLENGES RESEARCH 

Objectives Text Search Queries 

Part one: Search relevant articles on digital twin 

in power system context 

TS1: ((survey OR review) AND (digital twin) AND (power system OR 
smart grid)) 

TS2: ((power system digital twin) AND (application OR use case OR 

case study)) 

TS3: ((digital twin) AND (energy industry OR energy companies)) 

Part two: Search relevant articles related to DT 
functional, non-functional requirements and 

digital technologies.  

 

TS4: ((functions OR requirements) AND (digital twin))  

TS5: ((technologies) AND (digital twin)) 

Part three: Search relevant articles related to data 
federation in digital twin and challenges 

TS6: ((data federation OR data modelling) AND (digital twin) AND 
(power system OR smart grid))  

TS7: ((digital twin) AND (challenges) AND (power system)) 
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Remarks 

[1] H  L M  L  L 
Examined the DT concept evolution, features and DT applications in future power systems 

and functions. 

[2] L  H L   H  M 
Discussed the concept of DT in the energy management system and examined data federation 

aspects and requirements to construct a comprehensive model of a digitalised power system. 

[4] M  L M  L L 
Summarized key technologies of DT, applications, and use cases of DT for design, control, 

and maintenance. 

[8] L M H  L L 
Studied requirements and DT grid challenges and opportunities and proposed theoretical 

framework of the DT grid. 

[10] L  H M  L  M Explored DT applications and functions and discussed DT challenges in power systems. 

[11] M  H M  L L 
Discussed the operational requirements of DT, classified security threats in DT paradigm and 

presented different use cases for DT applications in different industries. 

[13]  H  L  H  L  M 
Provided a detailed investigation on advantages and use cases of technologies in different 

domains and researched challenges for future developments in DTs. 
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H: high and in-depth coverage of the subject           M: partial coverage             L: brief or no coverage 

 

As discussed above, one of the fundamental characteristics 

of a DT is its ability to collect and process data from its 

physical counterpart and send feedback, insights, and 

outcomes back to them. The integration of DT results into 

physical systems relies on robust and reliable 

communication infrastructures. DTs and physical systems 

use protocols such as Transmission Control Protocol/Internet 

Protocol (TCP/IP) as the foundation for real-time 

communication and industry-specific standards—such as 

International Electrotechnical Commission (IEC) 61850 in 

power systems or OPC UA in industrial automation, 

depending on specialized data handling needs. This enables 

the transmission of measurements and real-time operating 

data from the physical system flow to the DT for processing 

and analysis. DT-generated insights, such as control and 

command parameters and operational strategies, are sent into 

the physical system at appropriate synchronization rates to 

ensure consistent system states. Different systems can use 

different protocols for integration based on the specific 

applications and use cases. Shen et al. [19] provide an 

example of DT integration with a physical system using real-

time data. The authors suggested a testbed for establishing a 

power system DT (PSDT) that uses TCP/IP communication 

protocols and synchronization between physical and DTs. 

They demonstrated the DT's practical applicability using 

data and scenario generation scenarios, online fault 

identification, measurement upscaling, and expansion. 

While DT and physical systems often share a common 

communication infrastructure, achieving seamless 

integration relies on particular system requirements such as 

data heterogeneity, real-time processing demands, resilience 

to communication disruptions, and cybersecurity risks. 

 
C. DIGITAL TWIN ADOPTION IN ACADEMIA AND 
INDUSTRY 

1) ACADEMIC PRACTICES 

 Much research in recent years has discussed how DTs 

have been applied in the energy domain. Figure 2 presents 

different areas where DT has been utilized in the energy 

domain. One of the most widely adopted applications is to 

improve the reliability and performance of power converters 

and other critical equipment and enable real-time monitoring 

and predictive analytics for addressing potential failures [20]. 

Microgrids have applied DT technology for optimized 

integration and management, ensuring a stable and efficient 

operation in complex energy distribution scenarios [7]. In 

addition, DTs facilitate the development of more efficient 

and reliable transportation solutions, including Electric 

Vehicles (EV) and drive systems, which align with energy 

storage systems for seamless energy flow and storage 

capabilities [21]. Renewable energy sources, including solar 

panels and wind turbines, can also benefit from DT to 

maximize output and effectively integrate renewable 

resources into the power grid [22]. 

 Furthermore, DTs extend their applications to broader 

aspects of energy management, including forecasting to 

optimize energy usage in smart cities, cyber-physical attack 

detection to secure the power grid infrastructure, and energy 

forecasting [23],[24], [25]. They have also contributed to fault 

prediction, detection, and diagnosis in Photovoltaic (PV) 

energy conversion units, power converters, and distributed PV 

systems. DT can enable precise identification of operational 

issues in PV units, supporting early detection of faults in 

power converters, facilitating detailed fault diagnosis in 

distributed PV setups [26], [27], [28], and fault prediction in 

the transmission lines [29]. Moreover, DTs are used in the 

design phase of energy systems including structure design, 

simulation platform design, and reliability design. DT allows 

for the simulation of various scenarios, enabling engineers to 

optimize designs for robustness and reliability before the 

actual physical implementation [21], [30]. Similarly, DTs 

enable more sophisticated optimization, precise prediction of 

state variables, and the execution of complex control tasks, 

thus significantly enhancing the management of control 

systems. Through continuous monitoring and predictive 

analytics, DTs provide a proactive framework for maintaining 

the system health, ensuring operational efficiency, and 

extending the lifespan of energy conversion and distribution 

systems [31]. As power systems increasingly integrate DERs, 

analysing and optimizing for sustainability becomes 

paramount, and approaches for DT-driven sustainability 

assessment and optimization of performances have been 

proposed [32]. As DT has the potential for the automated 

gathering of data directly from power generation, they can be 

utilized for analytics using ML to produce meaningful 

insights, enabling informed decision-making for reducing 

[14]  H M  H L  H 

Reviewed functional blocks and enabling technologies for DT, discussed the data related 

challenges and provided an overview of DT adoption in smart cities, manufacturing, and 

healthcare. 

[15]  L  L  H M  L 
Provided a thorough review of data requirements and principles of DT that need to be 

considered when integrating data. 

This   

paper 
 H  H  H  H  H 

Provided a detailed review of DT applications in academia and industry, identifying 

functional, non-functional requirements and technologies that enable digital twinning in power 

system, as well as data federation aspects of DT focusing on data interoperability and 

challenges. 
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energy consumption, minimizing waste, and optimizing 

resource use.  

 The aforementioned power system DT solutions must be 

developed and tested using processes that do not interfere with 

regular business operations, jeopardize electrical services, or 

access confidential data. Nevertheless, access to physical 

counterparts and the use of data from actual physical power 

system infrastructure are frequently limited for research 

purposes in academic settings. In this regard, a real-world 

testing platform should be established by using the virtual 

physical twin (VPT) as a replacement for the physical 

counterpart in constructing the power system DT testbed. 

Shen et al. [19] argued that VPT is not expected to be a replica 

of its physical counterparts and precise emulation. They 

proposed the implementation of a virtual testbed in two 

phases. The first stage connects the VPT to the DT, while the 

second stage focuses on the interaction between the DT being 

developed and the actual system. Using the VPT in the initial 

phase eliminates the need to precisely replicate a physical 

system in a DT before specifying or creating any applications. 

The PSDT is deployed on a real-world power system in the 

second step of the workflow. That occurs after the DT and 

related services show robustness and satisfactory performance 

with the VPT interface. 

 

2) INDUSTRY PRACTICES 

The energy sector is experiencing a shift towards 

digitalization, driven by the adoption of DT technology, to 

revolutionize how energy companies and governments 

operate. Through various innovative collaborations and 

projects worldwide, application of DT in power systems can 

be seen as summarized in Table III. For instance, in Brazil, 

Companhia Energética de Minas Gerais (CEMIG) and 

Enline Energy Solutions have undertaken digitizing power 

grids using a sensor less Software as a Service (SaaS) 

solution. By leveraging real-time data from CEMIG's 

Supervisory Control and Data Acquisition (SCADA) system, 

system operators can optimize assets without physical 

sensors while reducing operational costs and carbon 

emissions. In addition, it also aims to enhance cybersecurity 

through a secure connection between operational and 

corporate networks, characterizing the multifaceted benefits 

of DTs in improving grid operations and environmental 

sustainability [33]. Meanwhile, the European Organization 

for Nuclear Research (CERN)'s collaboration with ABB in 

Switzerland focuses on increasing energy efficiency within 

its cooling and ventilation systems [34]. Deploying smart 

sensors and creating DTs for specific infrastructure 

facilitates real-time monitoring, diagnostics, maintenance, 

and optimization. ABB's technology can enable data-driven 

decision-making, significantly saving energy and reducing 

costs. ABB has also partnered with CORYS, a French 

simulation company, to advance DT modelling and 

simulation technologies across the energy sector and beyond, 

to reduce operational expenses and risks, highlighting how 

DT technology can enhance plant operations and 

maintenance strategies on a broad scale [35], [36].     

 Furthermore, Finland’s transmission system operator, 

Fingrid [37], has partnered with Siemens to introduce the 

ELVIS digital grid model. By connecting the single source 

of truth (SSoT) model to asset management data and 

historical and real-time measurements, the DT has been used 

to forecast future energy consumption and develop several 

investment scenarios, considering different policy 

frameworks. Adopting the electrical DTs in Fingrid has 

shown that it can save time and money while improving the 

accuracy and consistency of network models and offering 

efficient digitalization of current and future business 

processes. American Electric Power (AEP) is another largest 

transmission network in the United States. It aims to 

coordinate network model information across multiple 

functional business domains and centralize its management. 

AEP partnered with Siemens to deploy the electrical DT 

solution for the network model management improvement 

program [37]. The solution is designed based on the open 

standard of the Common Information Model (CIM). It allows 

for efficiently maintaining, analyzing, and exchanging 

network data across different domains. It ultimately can 

reduce the time and costs associated with manual model 

internal and external organization coordination. 

 The State Grid Corporation of China (SGCC) is the 

leading company in China in adopting DT for power grid 

management [38]. Focusing on Ultra-High Voltage (UHV) 

and smart grid technologies, SGCC's efforts symbolize the 

efficiency gains and operational improvements achievable 

through DTs, emphasizing the technology's potential in 

large-scale infrastructure projects. Siemens also leverages 

gPROMS Digital Process twin technology, presenting how 

DTs are used for process optimization [39], [40]. By 

enabling virtual design and testing, Siemens demonstrates 

how DTs can significantly reduce the development time and 

address issues such as raw material expenses and high energy 

costs, marking a significant advancement in manufacturing 

and production processes. IBM's integration of generative AI 

with DT technologies further highlights the potential for 

FIGURE 2. Overview of digital twin applications in energy domain. 
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innovation in the energy sector [41]. This approach allows 

for advanced asset management and operational efficiency  

through applications like visual insights for anomaly 

detection, large-scale asset performance management, and 

AI-powered real-time field service assistance. Through the 

Big Data Ecosystem and DT Platform initiatives, the 

government and private sector stakeholders in the United 

Arab Emirates (UAE) are also applying DT for creating 

accurate digital models of physical assets and infrastructures, 

to improve decision-making and risk management. By 

providing a dynamic 3D visualization of urban sustainability 

metrics, the UAE is leading the way in proactive climate 

change mitigation and infrastructure protection. South 

Korean company Techtree Innovation [42] is also 

contributing to the UAE's DT ecosystem, by sharing its 3D 

geospatial map technologies. Above worldwide industrial 

practices present the significant impact of DT technology in 

the energy sector by enhancing operational efficiency, 

reducing environmental impact, and fostering innovative 

approaches to future energy management. 

 

IV. REQUIREMENTS AND ENABLING TECHNOLOGIES 
FOR POWER SYSTEM DIGITAL TWINS  

 When developing a DT for power systems, identifying the 

functional components and requirements is important to 

achieve a precise, and interactive representation of physical 

elements and processes within power systems. Functional 

requirements of power system define the specific behaviours 

or functions of the power system, detailing what the system 

should do or perform in terms of operations, services, and 

constraints. Non-functional requirements specify how the 

system will do it [43]. These requirements are critical for the 

power system design, development, and operations, ensuring 

it meets the needs of its users and operates efficiently and 

reliably. Key functional and non-functional requirements to be 

considered when developing DTs for the power system are 

depicted in Figure 3. 

 
A. FUNCTIONAL REQUIREMENTS 

1) MODELING AND SIMULATION 

A DT includes models of the physical system, which are 

created using specific tools and are updated during the entire 

lifecycle. Vargas et al. [44] discussed different types of 

models such as submodels, complete models and synthetic 

models. Submodels are the decomposed parts or specific 

modules of a system/process. Each module is viewed as a 

unit with unique properties in terms of structure, behaviour, 

inputs, and outputs. Complete models are a collection of 

submodels that combine to build a larger, composite model 

that is accurate, sufficient, and suitable for providing 

services in a DT when data is received/sent to its physical 

counterpart. Due to the limitations of accessing real 

systems/processes, parameters, and data in the research 

community, synthetic models have been used as an 

alternative. It enables to investigate and assess a wide range 

of processes and occurrences. Although synthetic models 

share many of the similar features and characteristics as real 

systems, they can be freely shared and do not contain 

sensitive information. Using those models of power system 

assets, e.g., transformers, generators, transmission lines, 

Phasor Measurement Units (PMU), relays, etc., behaviours 

under different conditions can be simulated. DTs should 

have the capability to run simulations using different 

scenarios derived from the data from the physical system 

including predicting the likeliness of certain events and 

analyzing the impacts regarding the physical system. For 

example, DTs have been used to assess the stability and 
resilience of power systems under extreme weather events, 

cyber-attacks [45], [46] and renewable energy sources 

integration [47], [48], [49]. In addition, different simulations 

are performed to examine the potential causes when an 

anomaly is detected, or the effect on the system stability as a 

consequence of cyber-attacks. This requires the simulation 

to be (near) time to identify and mitigate the anomalies or 

faults. Furthermore, To optimize battery configurations as 

the battery runs in different environments or conditions, 

what-if simulations are also carried out [50]. By simulating 

the complex dynamics of power systems using DT, operators 

and/or researchers can foresee and mitigate potential issues, 

optimize grid performance, and prepare for future 

expansions or upgrades. Simulation results are crucial for 

understanding the effects of operational decisions and for 

testing the hypotheses in a virtual environment. 

FIGURE 3. Functional and non-functional requirements for digital twin in power system. 
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TABLE III 
DIGITAL TWIN APPLICATIONS IN ENERGY SECTOR OF DIFFERENT COUNTRIES  

Country 
        Company/ 

Institution 

 

DT Application 

 

Key Objectives 

Brazil  

[113], [116] 

CEMIG and 

EnlineEnergy 

Solutions 

Digitization of power grids with a sensor less SaaS 
solution, leveraging real-time data from SCADA 

systems for transmission line optimization. 

 

Reducing cost of operations and carbon emissions, 

enhancing cybersecurity. 

Switzerland 

[118] 
CERN and ABB 

Increasing energy efficiency in cooling and 
ventilation systems through smart sensors and DTs 

for infrastructure, enabling real-time monitoring, 

diagnostics, optimization and maintenance. 

 

Saving energy, reducing costs, data-driven 

decision-making. 

France 
[110], [117] 

ABB and CORYS 

Advancement in DT modeling and simulation 

technologies across the energy domain and beyond. 

 

Lowering capital and operational expenses, 

reducing risks, enhancing plant operations, and 

maintenance strategies. 

China 

[114] 

State Grid Corporation 

of China (SGCC) 

Power grid management, focusing on UHV and smart 

grid technologies. 

 

Efficiency gains, operational improvements in 

large-scale infrastructure projects. 

Global 

[97] 
Siemens 

Leveraging gPROMS Digital Process twin technology 

for process optimization in manufacturing and 

production processes. 
 

Reducing development time, addressing high 

energy costs, and raw material expenses. 

Global 

[112] 
IBM 

Integration of generative AI with DT technologies for 

advanced asset management and operational efficiency, 

including applications like  

visual insights for anomaly detection and AI-powered 

real-time field service assistance. 
 

Advanced asset management, operational 

efficiency improvement. 

UAE & Korea 
[115] 

Government and private 

sector & Techtree 

Innovation 

Use of DT through the Big Data Ecosystem and DT 

Platform initiatives, focusing on creating accurate 

digital models of physical assets and infrastructures 

for improved decision-making and risk management, 
along with dynamic 3D visualization. 

Contribution to the UAE's DT ecosystem with expertise 

in 3D geospatial map technologies. 

 

Proactive climate change mitigation, 

infrastructure protection, enhancing decision-

making and risk management. 

Supporting sustainable energy solutions through 

global collaboration. 

Finland Fingrid and Siemens 

ELVIS: DT for forecasting future energy 

consumption and developing investment scenarios by 

taking different policy frameworks into account.  

Saving time and money while improving 

accuracy and consistency of network models 

and offering efficient digitalization of current 
and future business process. 

USA AEP and Siemens 
DT of entire transmission network for efficiently 
maintaining analysis and network data exchange  

 

Providing better coordination of network model 

information across multiple business functional 

domains and centralized management of it, 

while reducing cost and time 

2) PREDICTIVE MAINTENANCE, MONITORING AND 

CONTROL 

Power system DTs should provide predictive maintenance, 

monitoring, and control capabilities, which can be leveraged 

by AI and ML techniques [51], [52]. By analysing patterns in 

the dataset, equipment failures can be predicted before they 

happen, enabling operators to schedule maintenance 

proactively. Moreover, forecasting renewable energy 

production, monitoring, and managing asset health and 

performance, and optimization algorithms can also help 

minimize downtime and reduce operational costs while 

guiding adjustments to improve overall system stability and 

performance [53], [54]. Monitoring techniques can be 

distinguished into online and offline monitoring [55]. Online 

monitoring processes new data in real-time, for which delays 

are intolerable. In contrast, there can be delays in offline 

monitoring, for example, stored time series data can be utilized 

later for different experimentation, such as simulating events 
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like faults or attacks and finding potential causes of events. To 

ensure the safety of battery physical twin, DT is used to track 

the discrepancy between the monitored and predicted 

behaviors, thereby enabling anomaly detection [50] and 

performing control measures as required. 

3) DATA INTEGRATION 

Accurate and efficient handling of data streamed from 

heterogeneous sources in physical power systems such as 

IoT devices, smart meters, and sensors requires seamless 

data integration and management approaches [56], [57]. It 

involves ensuring the aggregation and harmonization of 

measurement data from DERs and other components in the 

physical environment and updating them in real-time for 

analysis in the digital space. For the grid's stability and 

efficiency, it is paramount for DTs to have a unified view of 

its operational status and proactive responses to emerging 

system behaviors and conditions. When incorporating and 

exchanging data between diverse systems, such as the data 

integration from transmission and distribution systems, they 

often have disparate data models based on their operational 

goals and use cases. The challenge lies in enabling 

continuous communication and exchange of data between 

such systems to enhance grid management, reliability, and 

interoperability. For example, the CIM has been adopted to 

address this challenge by providing a standardized, object-

oriented model for describing the electrical network and its 

operational data, facilitating interoperability among diverse 

systems [58].  

4) SYNCHRONIZATION 

DT should constantly be synchronized with the present state 

of the system, reflecting any changes that take place in the 

physical system [59]. However, synchronizing the changes in 

the physical system and in the DT is challenging [60]. While 

frequent synchronizations would result in higher costs and 

more congestion in data flow, infrequent synchronizations 

would cause calculation bias and imprecise decisions. It raises 

the question of how to enable reliable and efficient 

synchronization [61]. Tan et al. [62] discussed different 

synchronization problems including prediction update, and 

model update. For example, deciding when to perform a new 

simulation experiment to attain an updated estimate of DT 

performance is the goal of the prediction update. Model update 

entails model parameter’s update, expanding detail level of 

model, or optimizing its parameters based on the most recent 

physical system observations. They studied the optimal 

synchronization problem as a dynamic stochastic control 

problem in their research. The goal is to reduce the overall 

misalignment costs of the prediction error resulting from the 

DT not being synchronized within allotted period as well as 

the projected synchronization cost of the DT. Jiang et al. [63] 

proposed optimization of Planning, Scheduling, and 

Execution (PSE) in precast on-site assembly using DT-

enabled real-time synchronization. DT offers cyber-physical 

visibility and traceability, which allows for the dynamic 

adjustment of PSE tasks based on real-time resource status and 

construction progress information. Furthermore, event-based 

and time-based approaches can be used to synchronize the 

physical system and digital counterparts. For example, in [19], 

the DT is updated, and the system's state is evaluated every 0.5 

seconds under steady-state conditions. When system variables 

change in the physical system, an event-based update of the 

DTs is initiated to reflect the observed change. Event-driven 

synchronization can also be performed, such as faults or 

breaker operations. Variables and parameters can be tailored 

to each application to reduce computational and 

communication overhead. 

 
B. NON-FUNCTIONAL REQUIREMENTS 

1) INTEROPERABILITY  

The ability of two or more systems or pieces of equipment 

made by different vendors to communicate and use 

information is known as interoperability, according to the 

Institute for Electrical and Electronics Engineers (IEEE), and 

it is attained by adhering to a set of standards. For DTs to 

remain applicable and interoperable among the federated DT 

ecosystem, the design of each individual DT should satisfy 

interoperability requirements by standardizing data formats, 

communication protocols, and so on [64], [65]. There are four 

types of interoperability for large-scale systems: 

technological, syntactic, semantic, and organizational [66]. 

Technical interoperability emphasizes the direct data 

exchange between systems, requiring compatibility in 

technical specifications. Syntactic interoperability considers 

the structure and format of data exchange, ensuring that data 

messages are encoded in a universally understandable syntax. 

Semantic interoperability ensures that the data exchanged 

holds the same meaning across different systems. 

Organizational interoperability addresses the governance 

aspects, defining the roles and responsibilities to foster 

interoperability. The coalition interoperability model's layers 

define nine interoperability layers. It includes physical, 

protocols, data/object model, and information interoperability, 

knowledge/awareness, aligned procedures, aligned 

operations, harmonized strategy, and political objectives 

levels [67]. In the energy domain, there are existing 

standardizations such as IEC 61850, IEC 61970, IEC 62325, 

and IEC 62541 for information exchange, coordination and 

harmonization among different stakeholders and components. 

For instance, The IEC 62541-standardized Open 

Communication Protocol United Architecture (OPC UA) 

protocol has been widely used for platform-independent, 

service-based communication in industrial automation. It 

facilitates the exchange of real-time data between control 

devices made by various vendors. 

2) RELIABILITY AND SCALABILITY 

Reliability requirements need systems to consistently perform 

their intended functions with high quality and deliver their 

intended services accurately [11]. DTs monitor and simulate 

real-world systems' processes and environments while 

handling extensive amounts of real-time data generated from 
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numerous data sources. Data is the key driver of DT. The DT 

of power system needs to collect high-quality data that can 

capture required aspects of physical power systems, validate 

and calibrate them. For DT to be reliable, it needs to maintain 

(near) real-time synchronization between the DT and physical 

power system to reflect the current states of the physical power 

system accurately. In addition, scalability ensures that a DT 

can expand its capabilities and continue to perform efficiently 

even when the scope of the DT grows [68], [69]. For instance, 

when extending the geographical coverage of the power grid 

and integrating more grid network components and data points 

or integrating new technologies, the design of DT should 

remain applicable and scale up as the system grows. 

3) CYBERSECURITY AND PRIVACY 

Because of the sensitive power system operations nature and 

the catastrophic potential of data breaches or system 

intrusions, cybersecurity and privacy requirements are 

critical [70], [71]. DT should incorporate vigorous security 

mechanisms to defend against cyber threats and guarantee 

the integrity and confidentiality of operational data [72], 

[73]. One of the approaches include developing the anomaly-

based or signature-based intrusion detection algorithms 

within DT. They can monitor and differentiate the normal 

and anomalous network activities and identify threats by 

comparing them to established attack scenarios and notify an 

alert to protect from the cyber attacks. Furthermore, robust 

encryption techniques like hashing and the Advanced 

Encryption Standard, can been implemented to protect data 

used in DT from potential cyber attacks. That can help 

encrypt the sensitive data and protect it against unauthorized 

persons even if the communication between physical system 

and DT is being intercepted. Furthermore, blockchain has 

become an vital enabler for DTs, particularly for managing 

complexities of product lifecycle data across a diverse 

ecosystem of participants [74]. By leveraging a decentralized, 

secure, and immutable ledger, blockchain provides secure 

data storage, access, and sharing while maintaining the 

authenticity of DT data. Decentralized applications built on 

blockchain can support secure, owner-centric data-sharing 

models that uphold data integrity and confidentiality [75], 

[76], [77]. 

In addition to the cybersecurity, DT should also provide 

privacy when handling with sensitive information. The 

General Data Protection Regulation (GDPR)’s Data 

Protection Impact Assessment for smart grid and smart 

metering environment supports data controllers in establishing 

the rules for collecting and processing personal data. DT has 

been used to train ML models based on energy consumption 

data of household appliances to analyse electricity 

consumption data and predict the future energy demands. 

However, those consumer-specific energy data can be linked 

with identifying and monitoring behaviour patterns of 

individuals and organizations. One potential approach that 

have been applied is the federated learning, which is a 

decentralized and privacy-friendly ML [78]. 

 

C. ENABLING DIGITAL TECHNOLOGIES FOR DIGITAL 
TWIN  

DT requires the comprehensive (near) real-time status from 

the physical environment. DT also needs the ability to 

simulate different scenarios to make smarter predictions and 

decisions, by collecting, analyzing, and correlating data from 

various physical power system components. Digital 

technologies are important to the implementation of DTs. 

They can facilitate the management, analysis, and integration 

of data seamlessly. They can ensure that DTs can analyze large 

amounts of data in real-time for more intelligent decision-

making, from data generation to analysis. This section 

categorizes key enabling digital technologies—such as IoT, 

AI, blockchain, cloud computing, and edge computing—

based on their specific contributions to data lifecycle stages. 

In addition, case studies on how those technologies can be 

integrated in the implementation of DTs are also discussed. 

Figure 4 presents the overview of digital technologies for DT 

implementation. 

 

1) DATA GENERATION 

Components that are part of power system infrastructure, 

including transformers, circuit breakers, and substations, can 

provide data about the power systems operational status. They 

are integral for different applications such as load capacity 

analysis, demand forecasting, identifying operational 

anomalies, or other dynamic stability studies. Distributed 

Energy Resources (DERs) including battery storage systems, 

wind turbines, and solar panels, can also produce data essential 

to manage the renewable energy to optimize grid performance. 

However, lack of quality and fine-grained data can hinder the 

development of solutions for the applications mentioned 

above. For example, ML based electricity demand forecasting 

requires substantial volume of data to train ML models and 

perform analysis. Despite public datasets availability to train 

ML models, their limited scope and size can impact obtaining 

highly accurate outcomes. In addition, ensuring compliance 

with regulations and privacy remains a challenge. Synthetic 

data generation approaches using Generative Adversarial 

Networks (GAN) is proposed to generate large-scale synthetic 

time-series data in smart grids to address data availability and 

maintain privacy, especially personally identifiable 

information from Advanced Metering Infrastructure (AMI) 

meters data [79]. Similarly, Lui et al. [80] proposed a scalable 

approach for creating synthetic Cyber-Physical Power 

Systems (CPS) topologies with realistic network 

characteristics. It captures real CPS networks features using 

graph variational autoencoders and graph neural networks 

(GNNs) while hiding vulnerable topological information and 

preserving similar features to the real networks.  

2) DATA COLLECTION  

Collecting new data or using existing data is a crucial step to 

develop an accurate DT. Integrating the IoTs within power 

systems is a significant shift towards more interconnected 

power distribution networks characterized by interconnected 

microgrids, and DERs. IoT devices can transform traditional 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3580055

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

14 VOLUME XX, 2017 

power systems into intelligent CPS by continuously feeding 

large data streams from physical and cyber assets into DTs 

[81]. Power substations within the grid are equipped with 

advanced industrial IoT-based sensing and real-time 

monitoring systems. They can enable operators to remotely 

monitor substation conditions with high precision during 

steady and transient states [82]. These systems gather 

extensive data suitable for both real-time and deeper offline 

analysis. Bundele et al. [83] also developed a 

microcontroller-based phasor measurement unit (PMU) with 

IoT capabilities to measure voltage amplitude and frequency 

of power system. The prototype was designed to improve the 

real-time data acquisition accuracy in power systems.  

3) DATA STORAGE 

Large volume of data correlated both physical and digital 

entities, and processed data should be converted into a unified 

mode and stored to reuse, share and analyze. Edge computing 

is a distributed computing framework, which offers the 

computation and storage near data sources. By facilitating 

collection of data real-time and processing at the network's 

edge, near data sources, edge computing enables fast data 

access and processing [79]. Cloud computing is another 

mechanism for integrating ML and AI techniques for big data 

analytics. For instance, substations that are equipped with 

smart sensors and IoT devices can gather power flow data, 

voltage levels, load demands and so on in (near) real-time. 

Those data can be initially stored and processed at the edge 

locally, at the substations, allowing for immediate responses 

to dynamic grid conditions. Consequently, rapid adjustments 

such as balancing power loads or responding to system faults 

or disturbances can be made without the latency of data travel 

to the central cloud server [80], [81]. Meanwhile, cloud 

services provide storage and high computational resources to 

aggregate, store and analyse large volume of data from 

multiple substations for long-term analysis or forecasting. By 

integrating IoT data with processing techniques in the edge 

and cloud, a virtual representation of the power grid that 

dynamically updates and optimizes itself based on real-time 

inputs from the edge, can be created while significantly 

improving the overall system efficiency and performance [87]. 

4) DATA ANALYSIS 

While data analysis is a important step in DT, AI, ML, and 

Deep Learning (DL) can provide meaningful analysis and 

insights for DTs in energy sector [88]. The consumption of 

renewable energy resources has been increasing, potentially 

surpassing traditional energy sources. Traditional methods for 

electrical operations such as monitoring restoration manually 

can lead to issues such as frequent downtimes with 

intermittent RES integration. Thus, they can be inadequate in 

addressing the complex challenges, particularly to adapt to 

unforeseen circumstances. The transition to smart grids for 

highly reliable and efficient energy management is rapidly 

evolving. It requires the adoption of advanced approaches to 

handle the big data produced by numerous components in the 

energy infrastructure. A more intelligent energy paradigm can 

be created by utilizing AI, ML and DL technologies, which  

integrates high intelligence into operational and supervisory 

decision-making. [89].  

 AI encompasses the broader concept of machines that can 

execute tasks that require human intelligence. ML, one branch 

of AI, represents a methodology that learns from data, 

improves from experience, and makes decisions. It can be 

classified into supervised learning (that use labeled datasets 

for prediction or classification), unsupervised learning 

(working with unlabeled data for clustering or grouping), and 

reinforcement learning (learning to make decisions based on 

feedback from performed actions) [90]. DL, sub-branch of 

ML, is based on multilayered neural networks, deep neural 

networks to train and learn from data. ML starts with data 

preprocessing. It includes data preparation or cleaning such as 

identifying and correcting errors, missing values, and 

duplicates. It is the foundation for data analysis, and it can 

have an impact on the performance and effectiveness of ML 

models. In addition,  cleaned data needs to be transformed into 

suitable format, and standard while keeping the same meaning 

of dataset’s content. Feature engineering involves scaling, 

normalizing, and extracting features from raw data using 

feature extraction techniques such as Principal Component 

Analysis (PCA) [91], Linear Discriminant Analysis (LDA) 

[92], Convolutional Neural Networks (CNN) [93], domain 

knowledge and so on. After preprocessing data and feature 

engineering, the next step is model training by dividing the 

dataset into training and testing sets. By selecting training 

algorithms or models such as decision tree [94], support vector 

machine [95], Long Short-Term Memory Networks [96], 

training data are fed to compute loss function, extract patterns 

and calculate the results. The performance of ML models can 

be assessed through testing datasets using different metrics 

including area under the ROC curve (AUC-ROC), accuracy, 

precision, recall or sensitivity, and F1 score. Integrating ML 

into DTs can offer significant advancements in monitoring and 

optimizing various systems. For instance, the health 

monitoring of wind turbines, anomaly detection in smart grid 

using PMU data, employ neural networks and genetic 

algorithms for the real-time power systems control and 

predictive health management of electric vehicle motors and 

photovoltaic systems [97], [98], [99], [100].  

5) CASE STUDIES ON THE INTEGRATION OF DIGITAL 
TWIN WITH ENABLING DIGITAL TECHNOLOGIES. 

 

The integration of DT with IoT and edge-cloud computing has 

been explored in [101]. The authors suggested a cloud-based 

DT design that facilitates, aggregates, and offers insights to 

help the distribution system infrastructure. A virtual 

representation of the networked microgrids' cyber and 

physical layers is an example of the proposed DT. IoT 

connects sensors, controllers, and actuators in energy cyber-

physical systems (ECPS), enabling real-time data collection 

and processing. Distributed sensors provide inputs such as 
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voltage, current, temperature, and other operational 

parameters from physical assets like distributed energy 

resources (DERs), energy storage systems, and microgrids. 

IoT devices utilize MQTT protocols for lightweight, efficient 

communication with cloud services. Amazon Web Services 

(AWS) hosts the virtual space for DT operations, facilitating 

storage, data analysis, and predictive modeling. Services like 

AWS Sage Maker are employed to train ML models for 

outage management, predictive maintenance, and 

optimization of grid operations. Cloud-based DTs combine 

data from multiple sources to create a cohesive representation 

of physical and cyber systems, enabling scalability for large 

systems. In that framework, AWS IoT Greengrass (GG) 

serves as the edge layer for localized data processing and 

immediate decision-making, reducing latency and preserving 

privacy. Edge systems perform preliminary data filtering and 

analysis to minimize communication bandwidth to the cloud. 

Distributed control is achieved using edge-hosted secondary 

controllers that regulate voltage, frequency synchronization, 

and power sharing among microgrids. 

      The proposed Hybrid DT Architecture effectively handles 

applications with less frequent updates, such as predictive 

maintenance and energy management, as well as real-time 

applications like contingency analysis, system restoration, and 

voltage regulation. The research demonstrates the feasibility 

and transformative potential of IoT, cloud, and edge 

technologies in energy system DTs. It shows the importance 

of future research directions, such as incorporating advanced 

encryption and authentication mechanisms for IoT-to-cloud 

communication to prevent unauthorized access, and 

integrating real-time intrusion detection systems to protect the 

edge and cloud layers from cyber threats. 

      Secondly, in the framework proposed by [73], DT is a 

virtual representation of smart grid components, simulating 

physical counterparts for monitoring and predictive analysis. 

Integrated into the Software Defined Networking (SDN) 

control plane, DT enables enhanced management of smart 

meters and grid states by storing operational behavior models 

and real-time analytics. IoT devices facilitate data collection 

and communication between grid components, such as smart 

meters and service providers, via protocols like MQTT. IoT 

devices serve as data sources and are fed into the DT. In 

addition, blockchain systems are used for processing and 

secure transmission. Blockchain provides a secure and 

decentralized framework for data authentication and privacy. 

Their approach ensured safe data sharing amongst grid 

components by implementing a voting-based consensus 

process to authenticate smart meters and establish immutable 

records.  

 In addition, Bi-GRU (Bidirectional-Gated Recurrent 

Unit) and a self-attention technique were also implemented 

to improve intrusion detection. The framework addresses 

vulnerabilities in open channels used by IoT devices, 

enhancing data integrity and mitigating risks like Man-in-

the-Middle (MiTM) and Distributed Denial of Service 

(DDoS) attacks. The results are demonstrated using 

performance metrics in terms of accuracy (99.73%) and  

precision (97.3%), surpassing traditional methods like 

LSTM and GRU. It's crucial to be aware of these risks and 

the need for robust solutions. DL enables temporal and 

spatial analysis of network behaviors for real-time threat 

detection and response. Expanding the proposed framework 

to handle a larger number of IoT devices and real-time 

datasets and optimizing the SDN control plane for faster 

decision-making and lower latency in highly dynamic smart 

grid environments can be the extension of their work. 

Moreover, future research can focus on advanced security 

features by integrating blockchain with advanced 

cryptographic techniques to further secure sensitive energy 

data. Additionally, studies on reducing the computational 

overhead of DL and blockchain by exploring lightweight 

algorithms and edge-based processing for resource-

constrained devices can also be beneficial. 

 
V. DATA FEDERATION IN DIGITAL TWIN FOR POWER 

SYSTEMS 

Creating a DT of power systems involves modelling and 

simulating physical assets, processes, or systems required for 

power generation, transmission, and distribution networks to 

provide a virtual replica capable of forecasting performance, 

enhancing operational efficiency, and assisting decision-

making via real-time data and analytics [102]. Data 

federation is an approach that allows integration, unification, 

and governance of data stored in various sources by using a 

federated query engine that translates a single query into 

subqueries that are distributed to data sources for processing 

and analysis [103]. It can facilitate the unified access and 

analysis without requiring data to be duplicated or relocated 

[104], [105]. The primary benefits of data federation include 

instantaneous data access, minimized data storage and the 

ability to access data from various places, and eliminating 

movement of data. In the power systems DT context, data 

federation, a foundation to create efficient DT, is paramount 

for efficiently accessing and combining myriad data types 

from distributed sources, such as grid network information, 

FIGURE 4. Overview of enabling digital technologies for digital twin 

implementation 
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operational and security logs, and external data like weather 

information. These sources are often heterogeneous in 

format and semantics. As illustrated in Figure 5, data 

federation offers a solution by providing a unified view of 

this disparate data, thus enabling DTs to access and analyse 

the information as if it were stored within a single, coherent 

database, eliminating the need for physical integration or 

data duplication.  

 While data federation enables seamless and unified 

access to data, it does not inherently address how to manage 

the functional complexity of a DT. This complexity arises 

from the diverse operational functionalities—fault detection, 

stability analysis, and predictive maintenance. Vargas et al. 

[44] proposed a modular framework emphasizing functional 

independence to address this. The operational capabilities of 

DTs are organized in this framework into distinct, task-

specific modules that are independently developable, 

maintainable, and scalable. This modular approach depends 

on reliable and consistent data inputs, which the federated 

architecture can supply, even while it offers flexibility and 

efficiency for localized operations. For the modular design 

to be effective in applications like renewable integration, 

integrated, high-quality data must be available. By providing 

the essential inputs for each module to function well and 

acting as the basis for unified data access, federated 

architecture can be used in conjunction with the modular 

framework. For distribution throughout the larger network of 

power systems, the modular framework's outputs, like 

localized analysis or predictive insights, can be fed back into 

the federated system. However, the modular framework's 

scalability across entities is limited by its more focused 

emphasis on organizational adaptation. This emphasizes 

how the federated architecture serves as the fundamental 

layer that makes it possible for strong, cross-organizational 

DT systems to be assured in their expansion potential. 

Together, these approaches can produce a comprehensive, 

scalable, and effective DT architecture that takes into 

account both data interoperability and functional flexibility.  

A. DATA TYPES 

A successful operation of power systems DT relies on a 

comprehensive understanding and utilization of various data 

sources [15], [106]. On the other hand, data requirements for 

the digital twinning of power systems are extensive and 

varied based on the complexity and the specific objectives of 

the DT [84], [88]. Zhang et al. [15] categorize DT data into 

five primary data types, i.e., data related to physical entity 

and virtual entity, domain knowledge, data related to service, 

and fusion data. Furthermore, additional operational and 

analytical data of power systems DTs are also required [108]. 

The types of those data sources can also be varied. Firstly, 

structured data includes tabular formats like operational 

parameters, sensor readings, and configuration settings 

SCADA systems; and unstructured data comprises textual 

information from maintenance logs, incident reports, and  

documentation from vendors; time-series data produced by 

sensors, smart meters, and IoT devices. In addition, 

geospatial data might detail the physical location and layout  

of infrastructure components such as power generation 

sources and transmission lines. Data can also be in graphs 

illustrating the relationships and dependencies between 

different constituent systems, such as the connectivity 

between nodes in the power grid. Ensuring the accuracy, 

timeliness, and security of this diverse data is pivotal for the 

successful implementation of DT and power system 

operations. 

B. DATA ATTRIBUTES 

Data attributes necessary for developing DTs of power 

systems can be categorized as in Figure 6. 

1) CORE SYSTEM DATA   

Operational Data i.e., time-synchronized grid measurements, 

sensor readings reflecting power output, voltage levels, 

frequency, rotor angle, current flows, and temperatures data 

required for real-time monitoring and decision-making. 

Asset Performance, i.e., data on different equipment, assets 

and how they perform under various conditions, their 

efficiency, output, downtime, and more, which is vital for 

optimizing asset utilization and planning maintenance. 

System Configuration and Network Data, i.e., grid models and 

topology data, geographic coordinates of the plant, plant type, 

detailed information on the power network's configuration, 

including grid connectivity and interdependencies. 

2) ANALYTICAL AND PREDICTIVE DATA   

Historical Performance and Trend Data, i.e., historical data, 

trend analysis, and equipment health records, which can be 

useful for benchmarking, predictive modelling, and 

maintenance optimization.                                         

Simulation and Model Parameters, i.e., data used in 

simulations to test various scenarios and outcomes, enabling 
fine-tuning of the DT and predictive analysis of system 

behaviours under different conditions. 

FIGURE 5. Overview of data federation. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3580055

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

14 VOLUME XX, 2017 

Cybersecurity Information, i.e., security logs and threat 

intelligence, including data on access, incident reports, 

vulnerability assessments, and information on potential 

cybersecurity threats. This data is vital for detecting, and 

analysing cyber threats and vulnerabilities, and ensuring the 

security and integrity of the power system and its DT. 

3) EXTERNAL DATA   

Environmental Data, i.e., weather and climate data 

(historical and forecasted) and geographical data and 

topological features, which are crucial for adapting system 

operations to environmental conditions. 

Market Dynamics and Service Data, i.e., consumption 

patterns, demand forecasts, compliance with regulations and 

standards, and market data like energy prices. 

Domain Knowledge and Regulatory Compliance, i.e., best 

practices, maintenance strategies, expert experience, 

predefined rules, industry standards, industry guidelines. 

 
C. DATA REQUIREMENTS AND PRINCIPLES 

In DT, addressing various data requirements, guided by data 

principles, is pivotal for enhancing DTs' accuracy, efficiency, 

and adaptability. Zhang et al. [15] discussed different data 

requirements and the principles for DT data. 

 Comprehensive data collection is essential, aiming to 

capture a full spectrum of conditions and events, supported 

by the "complementary principle," which advocates for 

integrating physical and virtual data sources. This is 

complemented by the necessity for real-time interaction, 

where immediate data exchanges between physical and 

virtual models are facilitated for dynamic adjustments, 

guided by the "timeliness principle" to ensure rapid data 

synchronization. The universality of data across different DT 

scenarios is achieved through the "standardized principle," 

which promotes the adoption of uniform data formats to 

facilitate universal application. Furthermore, knowledge 

mining, which extracts valuable insights from data to refine 

virtual models, is underpinned by the “association 

principle”, which focuses on identifying data relationships. 

Data fusion is another aspect, combing data from various 

sources to enhance overall data quality, with the "fusion 

principle" emphasizing the merging of diverse data sets for 

a more comprehensive analysis. Iterative optimization plays 

a significant role in continuously improving data quality 

through repeated fusion and analysis, driven by the 

"information growth principle,", which evaluates and 

enhances the information content of data. Lastly, accessible 

usage aims to simplify data access for users of varying 

expertise levels. This is achieved through the "servitization 

principle," which involves packaging data and data-related 

resources into on-demand services.  

 These principles and approaches collectively underline 

the importance of a approach to data management in DTs, 

ensuring that the technology can be applied across a wide 

range of scenarios with enhanced precision and adaptability. 

Notably, the fusion and standardized principles underscore 

the need for integrating diverse data sources, maintaining 

data consistency, and promoting seamless data sharing 

across different platforms and applications, highlighting the  

importance of data integration approaches like data 

federation [84].  

D. COMPONENTS FOR DATA FEDERATION 

1) CANONICAL DATA MODELS (CDMS) 

CDMs streamline the process of integrating various systems 

and databases by standardizing data entities and relationships 

into a simplified, universal format. This approach aims to 

establish a common language for managing data across 

different systems, which typically operate with their own 

unique languages, syntaxes, and protocols. The essence of a 

CDM lies in its ability to provide a unified definition of data, 

facilitating easier integration between systems, leading to 

improved operational processes, practices, and simplified data 

analytics. CDM introduces a new, distinct model that can 

encapsulate and translate diverse types of data [109]. 

2) KNOWLEDGE GRAPH 

Contextualization is the process of creating meaningful 

linkages between data sources and types so users may navigate 

and find data. Through contextualization, knowledge graphs 

can be built [110]. Knowledge graph represents various 

entities, such as components of the electrical grid, and 

delineates the relationships between them, effectively 

mapping out the intricate web of connections that constitute 

the grid. Utilizing domain-specific ontology based on 

electrical infrastructure, the knowledge graph incorporates 

diverse properties of each entity, offering a detailed 

understanding of the grid's components and their interrelations 

and allows for the representation of complex concepts and 

relationships within the electrical infrastructure [2]. By 

capturing and organizing data in this manner, the knowledge 

graph serves as an invaluable resource for various 

stakeholders and engineers to help them to deeply understand 

the target system, facilitating the establishment of a common 

knowledge base [111]. 

3) VERIFICATION MODULE 

Maintaining high-quality, accurate, and secure data is 

paramount when aggregating and providing unified data 

FIGURE 6. Different types of data attributes. 
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access. The data verification engine ensures the data model's 

quality is assessed and maintained throughout the integration 

process and should be designed to implement rigorous quality 

checks and validation processes. That includes identifying and 

correcting any inaccuracies, or anomalies in the aggregated 

data, ensuring adherence to predefined standards and schemas, 

and error correction routines to maintain federated data’s the 

reliability and integrity [2]. To sustain data quality over time, 

it also should implement robust data governance practices, 

establish protocols for data management and continuous 

quality control, and enforce stringent security measures, 

including encryption, and access controls, complemented by 

regular security audits to protect unauthorized access and 

ensure integrity and trustworthiness within a secure federation 

environment.  

 The approaches to ensure the effective operation of DTs, 

and the validity and reliability of data at both the individual 

and federated levels are proposed in [111]. Data validation 

process for the DT includes analyzing the characteristics and 

patterns of input data, such as time-series data, sporadic event 

data, or anomaly-sensing data. This analysis can identify 

efficacy criteria, such as thresholds for "normal," "caution," 

and "warning" zones, and identifies data features. These 

criteria can be established using statistical techniques, but their 

accuracy and application are improved by combining 

advanced causality analysis techniques, like Recurrent Neural 

Networks (RNNs), with expert domain knowledge. The 

authors emphasized the important of real-time validation to 

ensure the time-series data stays within acceptable ranges. 

Moreover, by integrating various data types, such as weather 

and temperature data, among others, the authors also 

suggested the use of attribute-based validation tools for 

assessing the system's effectiveness. 

 

4) CUSTOMIZED ADAPTERS OR STANDARDIZED 
INTERFACES 

In order to bring the disparate data silos together, they are 

combined into a SSoT or data federation system using either a 

specially designed adapter or standardized interface [2]. The 

implementation of standardized interfaces or the development 

of customized adapters enables access to a broad range of 

heterogeneous data models. It also facilitates seamless 

communication and data exchange across a diverse array of 

systems by harmonizing data formats, protocols, and 

communication [113]. For instance, FIWARE provides a set 

of Application Programming Interfaces (APIs) that can be 

used for integration of IoT components that adopt 

communication protocol the FIWARE platform supports 

[114]. Through FIWARE Next Generation Service Interfaces 

(NGSI) API, system components can interface with Orion 

Context Broker, which maintains updated context information 

from components and applications, after receiving data from 

devices and gateways. Similarly, SQL-based APIs, for 

instance, Java Database Connectivity (JDBC) [115], and Open 

Database Connectivity (ODBC) [116] are designed to access 

and adapt heterogeneous data sources to a relational model, 

often by transforming complex data structures into a flattened 

format. These adapters ensure that data from varied sources is 

accurately represented, up-to-date, and accessible within the 

SSoT, thereby enhancing data consistency, reducing 

integration complexity. 

VI. DATA INTEROPERABILITY FOR FEDERATION AND 
CHALLENGES  

A. DATA MODELS 

For the federation of data within power systems, seamless 

interoperability measures are essential for communicating and 

exchanging data among a range of devices, systems, and 

stakeholders. Data interoperability provides the capabilities 

required for data exchange, including data models, data 

formats, and interfaces. In this regard, many organizations 

have developed standards and frameworks to ensure data 

interoperability, enabling various constituent systems in the 

energy domain to communicate and interoperate effectively 

[117]. For example, SAREF (Smart Applications REFerence 

Ontology), Gaia-X, SGAM, and CIM have been adopted to 

provide guidelines to avoid data silos and integrate and 

interpret data for seamless collaboration and communication 

in energy data space. Data modeling is a basis for data 

federation and enables more efficient data architecture 

planning. In the context of DTs, which encompasses metadata, 

condition or state, event data, and analytics, data modeling 

becomes a key component in converting siloed data into 

scalable solutions. Data modeling in software engineering 

refers to the process of simplifying the representation of a 

software system's diagram or data model through the 

application of specific formal methods, which involves 

describing data using a combination of textual descriptions 

and symbolic representations. Data modelling, according to 

IBM, is the process of visualizing an information system to 

convey relationships between data elements and structures 

[118]. Data modeling can be achieved through visual 

representations that detail attributes, relationships, and data 

storage locations. There are distinct types of data models - 

conceptual, logical, and physical data models, and data 

modeling techniques like Entity-Relationship (ER) diagrams 

[119], UML class diagrams [120], and data dictionaries [121] 

have been utilized for abstracting the relationships between 

different data entities and visualizing how components of a 

physical entity and its operational data are interconnected. 

B. OPEN STANDARDS FOR DATA INTEROPERABILITY 

BETWEEN HETERONEOUS POWER SYSTEMS 

1) SAREF  

Published as a set of open standards by the European 

Telecommunications Standards Institute (ETSI) Technical 

Committee Smart Machine to Machine Communications, 

Applications REFerence Ontology (SAREF) provides a suite 

of ontologies that forms a shared model for semantic 

interoperability between different sectors in the IoTs and 
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contributes to data space development. SAREF comprises a 

core ontology and its extended ontologies for different 

domains, and two of them that can contribute to the energy 

domain are SAREF4ENER and SAREF4GRID [122]. A 

standardized ontology, SAREF4ENER, is used to represent 

data in the energy domain and facilitate communication 

between energy-related information systems. This includes 

connecting disparate data models. SAREF4GRID is used to 

for the domain of the electrical grid to enable data sharing and 

interoperability among various grid-related systems and 

devices.  

 To demonstrate the practical implementation of the 

SAREF ontology and validate the ontology, Weerdt et al. 

[122] validated the ontology by expressing all the information 

available from different smart devices in a home and enabling 

interoperability by allowing communication between smart 

devices. In their study, the authors mapped IoT data from 

smart devices into a knowledge graph format and tested the 

capability to effectively represent data from real devices. In 

addition, they developed an IoT setup using Raspberry Pi 

devices to simulate interactions between a thermometer, 

thermostat, and heater. All communications used SAREF to 

demonstrate interoperability. The study showed that SAREF 

supports modular extensions for domain-specific needs and 

demonstrated the capacity to integrate different devices under 

a unified framework. Its ability to connect diverse devices can 

also be applied to similar projects requiring standardized 

communication in IoT environment. 

2) SGAM 

The working group of EU Mandate M/490's Reference 

Architecture produced the Smart Grid Architecture Model 

(SGAM) to offer an approach for developing Smart Grid 

architectures. SGAM is a framework developed to tackle 

modern energy systems' growing complexity and 

interoperability challenges. It covers the interoperability 

between systems or components of the energy chain, from 

generation, transmission, distribution, and customer premises 

[123]. SGAM comprises five interoperability levels 

representing business processes, functions, communication 

protocols, objectives, information exchange and models, and 

components. It also includes diverse aspects, such as the 

information flows between technical functions, the 

components that carry out the technical functions in the 

system, and the standard protocols and data models that 

facilitate these information flows. An SGAM-based approach 

to analyze smart grid solutions in the DISCERN European 

research project has been proposed [124]. The DISCERN 

project evaluated smart grid solutions across different DSO 

implementations, using SGAM and IEC 62559 to support 

knowledge sharing and solution adaptation. It demonstrated 

enhanced monitoring of Medium Voltage/Low Voltage 

Networks by mapping use cases into SGAM layers, providing 

consistent representation and comparison of solutions. It also 

proposed a web-based tool that supports the collaborative 

development of use cases and SGAM models while enabling 

automatic analysis, such as requirements extraction, 3D 

visualization of architectures, and component identification. 

The DISCERN project demonstrated the potential of SGAM 

and IEC 62559 in fostering interoperable and standardized 

smart grid solutions. Developing the SGAM use cases to deal 

with other smart grid challenges, such as Electric Vehicles 

(EV) integration and microgrid management, can be potential 

applications of SGAM. In addition, future implementations 

can also consider broadening the SGAM's applicability 

beyond pilot projects to national or regional grid systems and 

facilitating dynamic updates of SGAM libraries based on real-

world implementations. 

3) GAIA-X 

Gaia-X is another European initiative that creates an 

interoperable, decentralized, data federated, and secure 

infrastructure [126]. Gaia-X is used to specify the 

requirements, design the architecture, and implement the 

software components to connect multiple stakeholders in a 

federation. It ensures interoperability, transparency, data 

security, and controllability of services through a standard 

description format, identity management, and compliance 

verification mechanisms. While enabling flexibility to adapt 

to industry-specific requirements, Gaia-X supports 

interoperable open interfaces. It also enables secure data 

exchange and decentralized storage where all data remains in 

the storage of organizations, thereby data owners have 

complete control of their data [127].  

 Gaia-X-based data spaces consider regulations and policy 

guidelines regarding the gathering, storing, and using of data, 

such as the EU Data Act. Through its federated data spaces 

and ecosystems, it plays an important role in supporting 

compliance with these regulations, providing a solid 

foundation for data management. Forte et al. [127] 

demonstrated how Gaia-X has been used in the industry. The 

manufacturing process of GMN (German Mechanical 

Engineering Company) used Gaia-X concepts. During quality 

testing, it uses cutting-edge sensor technology to generate 

digital fingerprints for motor spindles. To facilitate secure data 

sharing with customers, it also made these fingerprints 

available as datasets in ecosystems that comply with Gaia-X. 

It also makes new data-driven services like extended 

maintenance options, end-of-life forecasts, and remote 

diagnostics possible. To improve communication between 

IIoT platforms, Manufacturing Execution Systems (MES), 

and Product Lifecycle Management (PLM), Gaia-X principles 

were also incorporated into a data management platform. It 

facilitates seamless aggregation and publishing of data and 

improves operational capabilities and collaboration. The Gaia-

X facilitates scalable data ecosystems by standardizing 

governance and information exchange formats. The 

aforementioned use case demonstrates how manufacturers 

like GMN have added direct value to consumers by using 

Gaia-X ecosystems to provide customized, data-driven 

services like spindle health monitoring. While complying with 

the regulatory requirements, it is still difficult to ensure 
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compliance with various regional regulations, particularly in 

global deployments, and to modify current IT infrastructures 

to meet Gaia-X requirements, such as securing data handling. 

4) CIM 

Using industrial standards such as the canonical -based Grid 

Model Exchange Standard profile facilitates the sharing of 

updates to current and future grid models among external 

stakeholders, promoting vendor interoperability within the 

energy sector [129]. This International Electrotechnical 

Commission (IEC)’s CIM standard comprising a 

Specification, Schema, and Metamodel, developed by the 

Distributed Management Task Force (DMTF), is integral to 

the Web-Based Enterprise Management (WBEM) initiative. 

This initiative founds a unified framework for managing 

information across systems, networks, applications, and 

services [130]. For instance, the European Network of 

Transmission System Operators for Electricity (ENTSO-E) 

highlights that CIM for grid model exchange can enable the 

exchange of data vital for local or European-wide grid 

development research. The process of exchanging grid 

models encapsulates a wide array of applications, such as 

sharing information about power system equipment, grid 

topology, state variables of the power system, steady-state 

assumptions, and facilitating the management and analysis 

of market data, contingency analysis, and dynamic security 

assessments [131]. CIM employs foundational technologies 

such as the Unified Modeling Language (UML), the 

eXtensible Markup Language (XML), and the Resource 

Description Framework (RDF) to model, exchange, and 

ensure interoperability of data [58].  

 The most essential standards to this framework are the 

IEC 61970 and IEC 61968 standards, which are integral for 

the exchange of information in both transmission and 

distribution grids [132]. CIM includes classes that have 

specific attributes to represent different data object types 

needed for data exchange between Transmission System 

Operators (TSOs) and Distribution System Operators (DSOs) 

[133]. It is a common language that abstracts the specifics of 

each system's data model into a unified framework. This 

standardization allows for directly mapping different data 

elements and structures into a format understood by all 

parties despite the original differences in data representation. 

CIM's adaptability is a key feature, allowing for extensions 

to cover specific demands and the flexibility to design data 

exchange profiles constructed from CIM and custom 

extensions as a subset of semantic canonical model. 

Manufacturers, TSOs, and DSOs can construct their own 

CIM profiles, including all or part of the standardized CIM 

model, to meet their needs for data modelling [134]. For 

instance, to establish a common language to interoperate and 

common messaging between systems, CIM has been adopted 

as the reference data model in different research projects 

such as EU SysFlex [135], TDX-ASSIST [136], and OneNet 

[137] for various application cases. Those use cases are 

related to data exchanges and interfaces including 

transferring, anonymizing and aggregating energy data, 

prediction of production and consumption for operation 

planning, management of active power flexibility for 

congestion and voltage control. 

 To enhance smart grid automation, Naumann et al. [137] 

proposed the integration of two important standards, IEC 

61850 and IEC 61970/61968 (CIM), with an emphasis on 

protective systems. Both standards focus on distinct aspects 

of the smart grid to facilitate automatic and flexible 

protection methods. The author suggested a methodology for 

mapping IEC 61850 data formats to CIM objects to facilitate 

integration across various grid management levels. For 

instance, CIM classes for analog measurements and 

protection characteristics were mapped to logical nodes (LNs) 

in IEC 61850, such as MMXU (measurement) and PTOC 

(protection relay). Custom extensions are necessary as CIM 

does not have predefined models for some protective 

functions. In this regard, the authors expanded the CIM and 

created unique CIM classes to model protective functionality 

that is not yet standardized. For example, new CIM objects 

were mapped to characteristics of overcurrent protection. 

The study demonstrates CIM's adaptability to user-specific 

adaptations and capacity to satisfy changing grid needs. 

However, scaling the integrated framework to larger grids 

with various device types can still be challenging. The 

development of automatic ontology mapping tools between 

IEC 61850 and CIM may help to reduce errors and manual 

efforts. Future research can focus on incorporating features 

like real-time data synchronization between standards and 

semantic evaluation. Another research direction could be to 

test the integrated framework in situations with high 

renewable penetration, EV charging networks, or microgrids 

to assess performance under various circumstances. 

C. DATA FEDERATION CHALLENGES 

1) CONNECTIVITY AND INTEGRATION 

The physical network of the electric grid, with its diverse 

components, is an important part to enable the smooth data 

from the grid's physical layer to its DT, using various 

communication protocols. However, this data exchange 

comes with its challenges. Synchronization issues can occur 

when devices fail to receive the necessary data or signal 

network disruptions. Despite the advancements in IoT 

technologies and the deployment of 5G networks, which 

enhance connectivity within the DT framework, 

complexities such as software errors, updates, and latency 

issues persist, potentially hampering real-time monitoring 

and accuracy of data [6].   

 Furthermore, as the significance of sophisticated data 

analytics and management systems grows, power system 

DTs must not only handle the voluminous data generated 

from diverse sources but also ensure its integrity, accuracy, 
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and timeliness [7]. The integration and federation of 

disparate data types, often in incompatible formats, pose a 

significant barrier to achieving a seamless and secure flow of 

information [8]. However, overcoming these challenges 

could lead to significant benefits, such as optimizing grid 

performance and enabling advanced analytics to predict 

demand, manage supply, and mitigate potential disruptions 

in real time. The urgency of addressing these connectivity 

and data integration challenges cannot be overstated. Edge 

federated ML approaches have been popular for training the 

ML model by using data gathered locally on edge devices, 

and updating the global model in a central server, thereby 

reducing latency, resource utilization and improving 

bandwidth availability [139].  

2) STANDARDIZATION 

Deployment of DT necessitates a uniform framework to 

define, store, and execute DT models that can ensure 

interoperability and seamless integration across different 

systems. As energy systems contain diverse and 

heterogeneous system components from generation and 

transmission to distribution and consumption, they require a 

unified cross-system collaboration and interaction platform. 

 While standardization efforts and protocols have been in 

place to ensure interoperability for data federation in DT, 

they have limitations. CIM standard, for instance, offers a 

comprehensive and detailed schema covering different 

energy utility appliances. However, extensive customization 

is required to fit the CIM into specific operational scenarios. 

That can lead to longer deployment times and result in 

deviations in how different organizations implement CIM, 

potentially affecting interoperability. Similarly, the Generic 

Object-Oriented Substation Event (GOOSE) protocol, 

standardized as IEC 61850, has also been widely utilized for 

real-time data exchange in digital substations. Despite its 

numerous benefits, the GOOSE has limitations like security 

vulnerabilities since it did not extensively focus on 

cybersecurity measures [140]. That could lead to GOOSE 

communication and messages susceptible to different types 

of cyber-attacks when proper security control and protection 

mechanisms are not deployed. Moreover, since the energy 

sector is heavily regulated, compliance with local, national, 

and international regulations and standardizing DT 

deployment across different regulatory environments could 

also be an issue because local regulations may dictate 

specific requirements for data handling, system safety, and 

operational procedures. 

3) DATA MANAGEMENT AND GOVERNANCE 

The success of a DT relies on its underlying data quality. 

Consistent and high-quality data streams are not just 

important; they are crucial for DTs to function optimally. 

Poor and inconsistent data can significantly impair a DT's 

functionality and its ability to optimize power system 

operations [14], [15], [56]. This underscores the need for 

meticulous planning, data generation, collection, and 

management efforts to ensure the capture of relevant and 

high-quality data across power generation, transmission, and 

distribution process.  

 The complexities of data ownership and governance pose 

significant challenges in deploying DTs [57], prompting 

questions about the rights to share specific data. Even though 

a DT ecosystem development necessitates collaboration and 

data exchange between system stakeholders, they handle 

critical infrastructure, and the data they manage includes 

sensitive and confidential information that could potentially 

expose the grid to severe security risks if disclosed. For 

potential collaborative research and development aiming for 

the development of new methodologies, limited access to 

real-world operational data is a significant barrier. Thus, it 

could be formidable to test hypotheses accurately, validate 

models, or simulate realistic scenarios that would provide 

meaningful results. Despite the use of synthetical data 

generation techniques to overcome the limitations, how to 

carefully generate adequate and high-quality data to 

accurately reflect the complex dynamics of actual system 

operations and be appropriate for training ML models 

remains a prerequisite [141]. 

4) DATA SECURITY 

Data security can be another challenge to the operational 

integrity of DT systems. As DTs provide a digital-physical 

association, the security of the data link connecting them 

becomes imperative since it exchanges critical data between 

the virtual and physical world, which inherently possesses 

vulnerabilities and risks to data breaches, corruption, 

unauthorized access, and cyber threats [142]. Consequently, 

ensuring the security of communication medium is 

paramount, requiring rigorous compliance with data security 

requirements such as privacy, authentication, integrity, and 

traceability throughout the development of DTs. 

Implementing vigorous data security measures, including 

encryption of data, controlled access privileges, penetration 

testing, and source code scanning becomes essential in 

mitigating potential vulnerabilities [6], [70], [72]. 

Furthermore, emerging technologies such as blockchain can 

be helpful for DT communication security, ensuring data 

privacy and fostering trust within DT ecosystems [80]. These 

advancements signify a transformation towards more secure 

and resilient DT frameworks capable of resisting the evolving 

landscape of cyber threats. 

VII. CONCLUSIONS 

A significant proliferation in DERs and IoT devices 

drives the need for more streamlined data integration and 

exchange between utilities and energy systems. A DT of the 

power system serves as a virtual representation of physical 

infrastructure, enabling real-time reflection of system 

behavior through bidirectional data flow. DTs can enable 

interoperable and secure data exchange necessary for 

managing modern power systems by leveraging data 

federation principles. This review provided a power system-

centric synthesis of DT developments, distinguishing it from 

broader reviews that often cover general energy systems or 

manufacturing applications. It identified the concept of DTs, 

current practices of DTs in power system context, the 
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functional and non-functional requirements and how DT can 

satisfy its intended purpose and provide the expected 

outcomes. Unlike existing studies, this analysis investigated 

the concept and various aspects of data federation. It 

highlights requirements for data federation, data types, 

attributes, and principles for effective twinning. It then 

explores the supporting digital technologies for the digital 

twinning of power systems and how they are integrated into 

DT implementation by providing case studies. Another key 

contribution is the discussion of industrial interoperability 

standards and challenges, which are often underrepresented 

in existing literature. It presents an analysis of 

interoperability standards and highlights insights into their 

applicability and gaps. Through real-world examples and 

case studies, this review offers a practical lens that brings the 

operationalization of DTs into the power system context.   

The insights provided in this study can provide a 

foundation for researchers, especially DT application 

developers in power system engineering, to delve deeper into 

this field. Future work will focus on defining domain-

specific DT use cases, identifying required functionalities, 

and detailing key information modeling elements, 

particularly based on CIM. Through continued exploration 

and technological advancement, the full potential of DTs to 

transform power system operation and resilience can be 

realized, further driving the capabilities of smart grid 

technologies and sustainable energy solutions. Moreover, 

insights from this domain may serve as a foundation for 

extending DT applications into related areas such as Positive 

Energy Districts (PEDs), Positive Energy Buildings (PEBs), 

and community energy systems, where integrated energy 

management and interoperability are equally important. 
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