
Network Technology for Distributed Plant Automation

Thilo Sauter
Vienna University of Technology
Institute of Computer Technology

Gußhausstraße 27/E384, A-1040 Vienna, Austria
sauter@ict.tuwien.ac.at

Peter Palensky
Envidatec GmbH

Blohmstraße 31, D-21079 Hamburg, Germany
peter.palensky@envidatec.de

Abstract � This paper briefly describes the goals and
strategies of the PABADIS project that uses software
agent technology to create distributed structures in
plant automation. Subsequently, we discuss the
network requirements for flexible automation systems,
in particular with respect to plug-and-participate
mechanisms. Finally, we investigate whether mobile
agents are reasonable in such a context. It will be
shown that atomicity is a strong argument in favor of
mobility, and that mobile agents can improve the
flexibility and robustness of the system.

I. INTRODUCTION

One of the greatest achievements in recent plant and

factory automation was the introduction of networks in the
various levels of the communication hierarchy. Local area
networks in the office area and field area networks at the
control level allow for a comprehensive data acquisition
and processing. Finally, the interconnection of these
networks laid the grounds for distributed automation and
control systems both in a horizontal and vertical manner –
at least in theory.

From an application point of view, however, the current
situation is still dominated by centralized solutions. What
we find in practice is a hierarchical structure consisting of
an ERP (enterprise resource planning) system at highest
level, the MES (manufacturing execution system) and SCE
(supply chain execution) systems in between and the actual
control devices (such as PLCs, NCs, etc.) at the lowest
level. Fig. 1 shows this classical three-level hierarchy and a
rough correspondence with the well-known levels of the
communication hierarchy in plant automation. However,
the boundaries between the different levels are not clearly
defined. In fact, functions of the MES and SCADA level
can as well be implemented either within the control at
field level or within the ERP system.

One of the major drawbacks of this hierarchy is its static
structure, in particular of the ERP system. The real-world
situation of the plant has to be appropriately described
inside the system during setup to make the available
resources known to the planning tools. Any changes in the
real world such as the adding or replacement of production
machines always imply reprogramming or at least
reconfiguration of the software, which severely impairs the
flexibility of the system.

Contrary to the conventional centralized approach, the
PABADIS project (Plant Automation based on Distributed
Systems, funded by the European Commission within the
IST program [1]) focuses on automation in one piece
production plants using distributed systems. Making use of
software agent concepts and the Java-based Jini
networking technology, the project’s goal is to create a

plug-and-participate environment in plant automation that
allows a manufacturer

• to simply plug in a new machine and use it without
major changes within the legacy systems and

• to make job control more flexible by augmenting
“conventional” (mainstream) ERP functionality
with intelligence inherent in software agents.

The baseline vision of the project is that every
workpiece has an agent “attached to it” carrying the
necessary product information and moving through the
plant the same way the workpiece does.

The remainder of the paper is organized as follows: In
section II, we will briefly describe the goals and strategies
of the PABADIS project. In section III, we will discuss the
requirements for such a new type of flexible automation
network. Section IV is devoted to a discussion whether or
not mobile agents are reasonable in distributed automation
systems. Finally, we draw some conclusions from the
preceding argumentation.

II. THE PABADIS SYSTEM CONCEPT

Every production system needs two main ingredients:

the actual physical workpiece and information. If we
consider a single piece production system, most of this
information is tightly connected to the individual product,
such as

• production sequence and schedule,
• machine-related production data,
• status of the processing,
• general administrative information about the order.
In addition, there is information associated with the

entire production system, such as
• overall resource use,
• overall production schedule,
• machine status information,
• quality control information.
The system-wide scheduling and resource planning data

should of course be consistent with the product-specific
data sets, hence they can be compiled or deduced from
each other. Traditionally, these data are generated by the

ERP
and PPS

MES and SCADA

Control (PLCs, NCs)

Factory level

Cell level

Field level

Fig. 1: Traditional three-level hierarchy of plant automation and the
corresponding levels of the communication hierarchy.

ERP system in a strictly centralized fashion. Detailed
planning and adjustments to the overall scheduling are
subsequently done by the MES. With a view to the
information distribution sketched above, it seems
reasonable to largely remove the planning functionality
from the ERP and distribute it on the level below among
the “ products” that can independently keep track of their
processing needs and status. This requires the introduction
of an information-oriented “ alter ego” for each product,
and software agents seem to be a suitable approach for it.

A. Why agents?

PABADIS uses object-oriented models and object-
oriented software technology to describe and perform
automation tasks. The workpiece is seen as an object that
has all its necessary information regarding its production
somehow embedded or attached. It seems natural to use an
Intelligent Software Agent for such a purpose [2]. Software
agents are the real-world manifestation of object-oriented
and distributed functionality [3]. The combination of
software agents and physical instances (like machines or
the workpiece in our case) is sometimes also referred to as
“ holon” [4, 5], however, we prefer to stay with the term
“ agent” .

Using software agent technology helps to design the
system in a natural way that is easy to comprehend. Agents
can be assigned to the physical instance they are
responsible for. Other agents can represent and manage
machinery or resources [6]. These agents inhabit a multi-
agent system (MAS) and can cooperate to perform their
tasks as shown in Fig. 2.

Cooperation and other methods from distributed
artificial intelligence are further advantages that MASs can
incorporate. Finally, the option to have mobile code adds
another degree of freedom and improves the flexibility of
the system. Other approaches like the classical
client/server architecture can in principle also be used to
implement distributed systems, but do not have the
flexibility of agents.

B. System topology and agent types

Based on such agent-oriented design a PABADIS
system basically consists of a set of so-called BIIOs (Basic
Independent Intelligent Objects) that provide meaningful
services to the manufacturing process. This definition is
deliberately abstract and makes no assumptions about the
physical realization. In fact, we can distinguish three
different types of BIIOs:

• Manufacturing BIIOs are used for the physical
processing of the products. Depending the
granularity of the process steps and the envisaged
level of abstraction, these entities can be individual
machines (like dedicated drilling or milling
machines), multipurpose manufacturing cells or full
production lines. Even manual workplaces can be
included in the system, provided they have a
suitable HMI to the communication system.

• Transportation BIIOs link the manufacturing BIIOs
and move the workpieces. Depending on the
complexity of the plant, there may be one or several
independent transportation BIIOs.

• Logical BIIOs provide computational services and
have nothing to do with the physical processing of
the products. Instead, they are consulted by the
agents for special tasks like complex scheduling
algorithms, database search, or the like.

The BIIO community has an interface to the ERP
system, the so-called Agency. The task of this component
is the creation of the software agents and finally also their
extinction upon completion of their task. All these
components are connected via a backbone network, as
shown in Fig. 3.

The agents scattered in this system are only partially
mobile, depending on the necessities of their tasks. From a
functional point of view, three agent types exist:

• Residential Agents are the interface between the
BIIOs and the agent community. They are
stationary and tied to their specific BIIO. Their task
is to provide information about the capabilities of
the BIIO and to allow other agents to access the
respective resources.

• Product Agents are associated with the actual
workpieces being produced. They control the
manufacturing process from the viewpoint of the
individual product and take care of scheduling,
resource allocation, or reporting. To this end, they
have to be mobile.

• Plant Management Agents finally organize the
manufacturing process from a system-wide
perspective. Their tasks include quality
management, reporting, and the like. These agents
are not necessarily mobile. If they are stationary,
they reside in the agency and perform their tasks by
message exchange with the agent community.

All system components that participate in the agent
community, i.e., BIIOs and the agency, need an agent
container or agent host providing a runtime environment
for the agents. This environment has to provide suitable
communication facilities and abstraction from the
underlying operating system and hardware, as well as

Workpiece
Agent

Drilling
Machine

Agent negotiation

Fig. 2.: A workpiece agent negotiates with a drilling machine agent.

Manufacturing
BIIO

Manufacturing
BIIOs

Logical
BIIO

Transportation BIIO

ERP
System

Agency

Fig. 3: Topology of a PABADIS plant. The gray balls signify mobile
software agents, the black balls are residential agents.

agent mobility. At present, the two Java-based systems
Grasshopper [7] and LANA [8] are under consideration.

C. Workflow in a PABADIS plant

The manufacturing process according to the PABADIS
idea starts with the generation of a conventional production
order by the ERP system. This order comprises the
sequence of required processing steps together with the
appropriate parameters. The production order is passed to
the agency, where it is translated into a product agent and
joins the multi-agent system.

Step by step, the product agent executes its production
plan. The basic procedure it follows is always the same: it
consults a lookup service, which present in the network to
find the BIIOs that can provide the needed manufacturing
service. The lookup service acts as a central service broker
and will be dealt with later on. Subsequently, the product
agent contacts the residential agents of the BIIOs and asks
for information necessary to decide which service provider
it should choose. Such information includes the availability
(i.e., the earliest possible free time slot for processing), the
expected duration of the action, but perhaps also the
location of the BIIO for calculation of the transportation
costs. Based on these data, the agent selects the “ optimal”
BIIO.

The selection process sketched here is fairly simple.
More complex scheduling procedures would involve the
communication of the agent with competitors to
dynamically change the resource allocation and create
different sequencing and dispatching plans. Although the
development of distributed scheduling algorithms is not in
the focus of the PABADIS project, such advanced features
can be added to the agents at any time by replacing their
selection and negotiation modules at creation time.
Alternatively, specialized logical BIIOs can provide these
services. Note that in order to facilitate the upgrading of
the system at a later date, the residential agents (which
necessarily have to be supplied by the manufacturers of the
BIIO hardware) are expected to be rather unintelligent.
They do not play an active role in the scheduling
negotiations, they just maintain their local processing
sequence once it has been fixed.

Throughout the manufacturing process, the product
agent guides the workpiece. Upon completion, it returns to
the agency and is destroyed there. The agency then
generates a report to the ERP system using the data the
agent has collected on its way through the production (if so
desired by the ERP system in the production order). In
parallel, plant management agents are created by the
agency to fulfil specific control or supervision tasks that
are not related to individual products.

III. NETWORK REQUIREMENTS

Multi-agent systems like the one that is going to be used

for PABADIS are usually based on some sort of network
operating system (NOS) [9] that provides services like
communication, directories and migration. This NOS
requires a communication network that offers

• peer-to-peer communication,
• message-oriented services, and
• uni- and multicast transport services.

Using such services, the NOS can implement directories
where the agents can find each other and other agent-
relevant services. PABADIS will utilize IP-based LANs, in
particular on the basis of Industrial Ethernet, for its
communication. The industrial environment where the
application of this system is situated usually demands hard
real time characteristics and reliable network connections.
Although conventional LANs are not well suited to real
time communication, the use of agent technology can
support these requirements on application level, as will be
shown later in this paper.

Directory services are a key to achieve the desired
flexibility in PABADIS, and they are the basis for the
plug-and-participate environment mentioned in the
introduction as one main characteristic of PABADIS. By
the term “ plug-and-participate” , we primarily mean the
self-organization of services in the network from an
application point of view, i.e., communicating partners can
use each other’s services without manual configuration of
the respective interfaces. Independent of this aspect is the
low-level network setup for the individual devices, which
is frequently subsumed under the term “ plug-and-play” ,
but not necessarily the primary goal of PABADIS.

At any rate, plug-and-participate as we understand it
requires some sort of “ middleware” layer enabling the
abstract formulation of distributed objects and services.
There are several middleware technologies available today,
which shall be briefly screened for their suitability.

Java/RMI (remote method invocation), DCOM
(distributed component object model), and CORBA
(common object request broker architecture) allow the
specification of distributed objects and their use. However,
they have no generic built-in plug-and-participate features.
Although they support mechanisms such as naming or
lookup services to retrieve the objects, they rely on the user
(i.e., the application running on top of the middleware) to
properly register the distributed objects. Consequently, it
would in principle be possible to implement plug-and-
participate mechanisms with these paradigms, but at the
expense of additional effort required for every application
in the distributed system.

To date, there are three popular technologies that
provide so-called service discovery protocols, which is
actually what we need if we want plug-and-participate
functionality. UPnP (universal plug and play) is an open
system pushed primarily by Microsoft and mainly targeted
at connecting appliances and PCs. It is based on additions
to the TCP/IP suite rather than on application level
protocols to create platform-independence. Jini is based on
Java/RMI to support ad-hoc networking. The “ run
anywhere” feature of Java makes it independent of the
platform as long as a Java Virtual Machine is available.
The third technology is Salutation, which is designed to be
fully independent of platforms, operating systems and even
transport protocols. Other approaches are the SLP (service
location protocol) developed by IETF and the SDP (service
discovery protocol) used in Bluetooth. Comparisons of all
these protocols and additional information can be found in
[10, 11, 12] and the references cited therein.

For PABADIS, Jini [13] was selected as the middleware
of choice. The reason for this decision was a rather
pragmatic one. The agent systems considered are based on
Java to permit mobility. Hence Jini snugly fits in and

complements the system. What is actually used within the
framework of PABADIS is Jini’s lookup service. A new
BIIO (to be precise, its residential agent) that is attached to
the system registers with the lookup service and announces
the processing services it can provide. The product agents
in turn use the lookup service to find appropriate BIIOs as
described in the previous section (see also Fig. 4). It is
noteworthy that many pure MAS also have some sort of
lookup service. This procedure is usually performed by
some facilitator-agent or broker-agent [14]. However, there
is no self-registration in these systems, and this is why we
use Jini. The only problem with Jini is the a priori
unknown resource consumption, which depends on the size
of the interfaces (the Jini proxies) specified by individual
services and may impair the use of Jini on devices with
limited memory resources. Since exactly such devices are
currently of particular interest in plant automation systems,
a Jini derivative will be used for the actual implementation
[15].

If we return to the beginning of this section, we could
state that Jini is the NOS of choice for PABADIS.
However, Jini does not provide all aspects that one would
expect from a NOS, so we shall see it as only one layer of
the NOS. In particular, Jini does not provide a migration
service for mobile agents, or network- and CPU-load
balancing for distributed applications. Jini just offers a
sophisticated lookup service for services and data, the
remaining services needed by the agents must be provided
by the MAS framework.

Last not least, another requirement for the PABADIS
network is the possibility to form topological hierarchies.
Subnets of the system should have independent
characteristics like bus load or physical properties. Some
parts of the plant might require low-power nodes for
hazardous environments, others high-speed backbones.
Traditional IP routing gives a well proven, simple and
robust manner for hierarchies, which is also a convincing
argument in favor of the envisaged IP-based network
infrastructure.

IV. TO MOVE OR NOT TO MOVE

The PABADIS project aims at robust and flexible

distribution of functionality, and we have been talking
much about mobile software agents in the preceding
sections. However, it should be stressed in this context that
mobility of software code is not a dogma. Conversely, it
should be applied with care, and only, when and where it is
reasonable in order to improve the performance and quality
of the system. The question is, if it is necessary or
unnecessary for PABADIS to use mobile software agents
[16] that can roam the automation network.

Let us hinge the discussion of this focal question upon
an example. We suppose a PABADIS agent is in charge of
having a workpiece painted. It knows the sequence and
color of paints that are to be sprayed and gives the
corresponding orders to the agent that is in charge of
controlling the painting machine. For the sake of
simplicity, we also presume that the machine is controlled
by some PLC that can host software agents.

A product agent as defined in section II would be a
mobile agent that migrates to the PLC of the machine to
perform local communication. By contrast, a stationary

agent would stay on its agent host (most likely the agency

shown in Fig. 3) and communicate with residential agent of
the PLC via the automation network. Generally, the
decision against or in favor of mobile agents is usually
based on the relation between communication load and
agent size. If an agent has the ability to search a large
database in some specialized manner, it can make sense to
send this agent to the database instead of having it search
via the network if the size of this agent is smaller than the
data that has to be explored.

In our case, the commands the product agent sends to
the machine agent in order to control the execution of the
painting process are rather short messages that can easily
be transmitted via some message. So we do not expect any
bandwidth reasons for using mobile agents. Considering
the bandwidth can even lead to the insight that mobile code
is more harmful for the performance of the entire system
than beneficial. If the agent is mobile and equipped with
every processing information needed for the product, it
also has to carry the PLC program that is to be executed on
the painting machine. Every time the agent moves to
another machine, it has to take the program with it.
Consequently, although the program is used only once, it
adds to the network load each time the agent changes is
working place. On the other hand, if the product agent is
stationary, the program needs to be uploaded to the PLC
only when it is to be executed – a tremendous reduction in
network load and a good argument against mobility.

Apart from the network performance aspect, having the
product agents hosted on some powerful agent host
computer gives a number of additional advantages:

• The system administration of centralized
architectures is sometimes easier than dealing with
distributed systems.

• The system is less complicated.
• Debugging and supervision is easier.
• One powerful agent host might be cheaper than a

number of PLCs that can host mobile agents.
These are typical advantages of centralized

architectures. In our case they also apply to a non-mobile
architecture. Highly distributed systems, by contrast, show
their benefits when the system tends to become very large
or has to be very flexible.

The requirements for an automation network within the
PABADIS concept cannot be fully satisfied with a

Registration of
new BIIO services

Residential
Agent

Lookup
Service

Mobile
Agent

Mobile
Agent

Mobile
AgentResidential

Agent

Retrieval of
BIIO services

Collection of
availability
information

Negotiation
(optional)

Fig. 4.: Communication relations between the lookup service and the
various software agents.

centralized and non-mobile architecture. Suppose a
network infrastructure that is subject to frequent
maintenance and that is situated in a harsh environment.
The reliability and availability of such a network might not
be sufficient for an automation task. Idle machines and
machines waiting for commands on broken communication
channels cause delays and therefore increased costs, not to
speak of potential safety problems when online
communications fail. One way to overcome such problems
is to design the network in a fault-tolerant and robust
manner with redundant paths, robust physical layers and
flexible routing.

PABADIS takes another way. By using mobile software
agents, equipped with all necessary schedules, plans and
information to perform its task, it is possible to temporarily
lose connection to the rest of the network and to finish the
task locally. This independence of the source is an
important argument in favor of mobility.

Mobile agents are preferably used for networks with low
availability (like dial-up connections). The networks used
in PABADIS are actually not of this type, they are
considered to be reliable and always online. But the
required flexibility and robustness results in an automation
concept that can cope with unreliable network connections.

One key point in the context of reliability is atomicity,
meaning that an action is either fully executed or not
executed at all. Sending an agent to a PLC is such an
atomic operation. Once the agent is there, it is fully
capable to perform its task, because the subsequent
operations are local. This is not the case if the product
agent is stationary on a different host, unless the actions
the agent performs is restricted to a simply “ start”
command of a previously uploaded PLC program.
However, if the interaction of the product agent with the
PLC are more complex (which we have to presume in a
general automation framework), we can guarantee the
completion of a task only if we have local control. The
consideration as to which processing steps ought to be
atomic is by the way one design criterion for the definition
of the BIIOs in an actual PABADIS plant.

It should be noted that the migration of the agent in itself
is also an atomic operation. If the connection is lost during
migration, the received code is not a complete agent and
therefore rejected. Having the agent local at the PLC it
controls or interacts with also brings about a number of
advantages:

• There is no need for a hard real-time protocol on the
network since control commands relevant for the
processing task are no longer sent via the network.

• Agents can migrate “ in advance” when network
load is low.

• Agents can be electronically signed and increase
system security as they encapsulate their
information.

• The PLC can perform a basic plausibility check of
the agent script before it is executed.

• The computational load is distributed to multiple
PLCs and does not require a powerful agent host
node.

• The system has no obvious “ single-point of failure”
like an agent host.

The main advantage beside the robustness against
network errors is the relaxed real-time requirements for the
network protocol due to its local operation as depicted in
Fig. 5. PABADIS' IP-based LANs have no or only
insufficient real-time characteristics, unless special quality-
of-service extensions are used. Therefore the typical low-
level control commands are eliminated from the
communication over the network, and also other tasks can
be done based on non-hard real-time communication. If
agents need to coordinate each other they will simply
exchange schedules with some common time base. This
mitigates the constraints for the network and makes
coexistence easier for other applications. Yet it is sound
not to run, e.g., office applications over the same network
that need to transfer large amounts of data. Although
possible, this will increase the network load and adversely
affect the performance of the automation system.

In total, the arguments that speak in favor of mobility
are slightly stronger. A mobile agent would come along
with our workpiece to the painting machines, would
operate these machines, log statistics, and do other things
on behalf of the workpiece like paying virtual money to the
machines for time and paint that the product price will be
based on afterwards. To avoid unnecessary network load,
PLC programs and other common knowledge needed by
more than one agent can be administered and provided by
specialized database BIIOs. They provide a system-wide
library of knowledge and information that can be used by
all members of the system. The product agent only carries
links to the item it needs for a certain processing step.
Before it executes this subtask, it moves to the database
BIIO, fetches, e.g., the respective PLC program and moves
on to the actual machine. This ensures that large programs
are transferred only when they are really needed.

Once again, the basic functionality of distributed
systems can as well be achieved with non-mobile software
agents. The autonomous behavior and the encapsulation of
data and commands is independent of the mobility of the
agents. However, making them mobile simply increases
the flexibility and robustness of the system.

V. CONCLUSIONS

PABADIS tries to enhance plant automation by using

state-of-the-art communication technology and distributed
functionality. Instead of endangering the robustness of the
system, this increased complexity can support the
autonomy and fault tolerance of the automation
application.

The consistent implementation of distributed
applications and agent-oriented software helps to achieve a
flexible, modular and scalable system. The positive
characteristics of multi-agent systems like self-

PLC

Mobile
Agent

PLC
Agent non RT

migration
RT

control

Fig. 5.: A mobile agent migrated to a PLC

organization and adaptability are important contributions
to modern automation networks.

The decision whether or not mobile agents should be
used is an ambivalent and controversial one. Actually
almost every task can be done with or without mobile
agents. At first sight, mobile agents just increase the
complexity of the system, which should be avoided. The
main final reason for the use of mobile agents is their
atomic and reliable function. In addition, their mobility
reflects the real-world situation in a plant better than static
agents do, which results in a clearer and more
comprehensible model for the algorithms and the
corresponding software.

REFERENCES

[1] PABADIS (Plant Automation Based on Distributed

Systems), IST-1999-60016, http://www.pabadis.org.
[2] J.P. Müller: “ The design of intelligent agents: a

layered aproach” , Lecture Notes in Computer Science,
Vol. 1177, Springer Verlag, Heidelberg, 1996.

[3] J. Bryson, B. McGonigle: “ Agent Architecture as
Object Oriented Design” , in Intelligent Agents IV,
Springer Verlag, 1998.

[4] L. Bongaerts, J. Wyns, J. Detand, H. Van Brussel, P.
Valckenaers: “ Schedule execution for a holonic shop
floor control” , in Proceedings of European Workshop
on Agent-Oriented Systems in Manufacturing, 1996,
Berlin, Germany, 1996.

[5] M. Fletcher, S.M. Deen: “ Fault-tolerant holonic manu-
facturing systems” , Concurrency and Computation
Practice & Experience, vol.13, no.1, pp.43-70, 2001.

[6] J. Bredin, D. Kotz, D. Rus: “ Market-based resource
control for mobile agents” , Second International
Conference on Autonomous Agents, Minneapolis,
MN, May 1998, ACM Press, pp. 197-204, 1998.

[7] http://www.grasshopper.de

[8] C. Bryce, J. Vitek: “ The JavaSeal Mobile Agent
Kernel” , in D. Milojevic (ed.), Proceedings of the 1st
International Symposium on Agent Systems and
Applications, Third International Symposium on
Mobile Agents (ASAMA'99), Palm Springs, May 9-
13, 1999, ACM Press, pp. 176-189, 1999.

[9] P.H. Enslow Jr., T.G. Saponas: “ Parallel control in
distributed systems- a discussion of modes” , in David
J. Evans (ed.), Parallel Processing Systems, Cam-
bridge University Press, Cambridge, 1982.

[10] C. Bettstetter, C. Renner: “ A Comparison of Service
Discovery Protocols and Implementation of the
Service Location Protocol” , Sixth EUNICE Open
European Summer School: Innovative Internet
Applications, Twente, Netherlands, September 13-15,
2000, http://www.lkn.ei.tum.de/~chris/publications/
eunice2000-slp.pdf.

[11] C. Lee, S. Helal: “ Protocols for Service Discovery in
Dynamic and Mobile Networks” , www.harris.cise.ufl.
edu/projects/publications/servicediscovery.pdf

[12] G.G. Richard: “ Service advertisement and discovery:
enabling universal device cooperation” , IEEE-Inter-
net-Computing. Vol.4, No.5, p.18-26, 2000.

[13] B. Venners: “ Jini: New technology for a networked
world” , in Javaworld 06/99, 1999.

[14] Nishida, Takeda: “ Towards the Knowledgeable
Community” , Proceedings International Conference
on Building and Sharing of Very-Large Scale
Knowledge Bases '93 (KBKS '93), 1993.

[15] S. Deter, K. Sohr: “ Pini - A Jini-like Plug&Play
Technology for the KVM/CLDC” , Proceedings of
Innovative Internet Computing Systems, Springer, pp.
54-66, 2001.

[16] J. Kiniry, D. Zimmerman: “ A hands-on look at JAVA
mobile agents” , IEEE Internet Computing, Vol.1,
No.4, 1997.

