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Abstract — The cyber attacks in Ukraine in 2015 and 2016 

demonstrated the vulnerability of electrical power grids to cyber 

threats. They highlighted the significance of Operational 

Technology (OT) communication-based anomaly detection. 

Many anomaly detection methods are based on real-time traffic 

monitoring, i.e., Intrusion Detection Systems (IDS), that may 

produce false positives and degrade the OT communication 

performance. Security Operations Center (SOC) needs 

intelligent tools to conduct forensic analysis on generated IDS 

alarms and identify the attack locations. Therefore, in this 

paper, we propose a novel, graph-based forensic analysis 

method for anomaly detection in power systems using OT 

communication network traffic throughput. It employs a hybrid 

deep learning model involving Graph Convolutional Long 

Short-Term Memory and a Convolutional Neural Network. The 

proposed method aids SOC with the continuous OT security 

monitoring and post-mortem investigations. Results indicate 

that the proposed method is able to accurately pinpoint the 

locations of cyber attacks on power grid OT. 

Keywords— Anomaly Detection, CNN, Cyber Security, 

Digital Forensics, Graph, GNN, LSTM, Operational 

Technology 

I. INTRODUCTION 

Cyber attacks on power systems are low-frequency 

disturbances with high impact that can have a wide range of 

adverse consequences. The potential implications of the cyber 

attacks include equipment damage, load shedding, and grid 

instability. In the worst-case scenario, cyber attacks have the 

potential to cause system-wide cascading failures and a 

blackout. Consequently, cyber attacks on power grids pose a 

grave threat and have already been identified in the real world. 

On December 23, 2015, for instance, a cyber attack on the 

power grid in Ukraine resulted in a blackout that affected 

225,000 customers [1]. On December 17, 2016, a more 

sophisticated cyber attack caused a power outage in the 

distribution network, causing 200 MW of load unsupplied [2]. 

In order to accomplish their goals, the adversaries used a 

variety of different attack strategies. They can be correlated 

with the seven phases of the cyber kill chain to conduct a 

comprehensive evaluation of an advanced persistent threat. 

These stages include reconnaissance, weaponization, delivery, 

exploitation, installation, command and control, and action on 

objectives [3]. The current techniques employed for 

identifying attacks on power grids are constrained in their 

effectiveness. The majority of these anomaly detection 

methods are based on power system measurements that arise 

after successful early attack stages of the cyber kill chain, e.g., 

false data injection [4]-[6]. Therefore, this points out the 

importance of promptly detecting attacks in their early stages 

by means of anomalies in Information Technology-

Operational Technology (IT-OT) systems. 

Signature-based [7], sequence-based [8], rule-based [9]-

[11], and machine learning-based [12] are the four primary 

methods reported in the literature for detecting anomalies in 

power grid IT-OT communication traffic. According to recent 

research, there is a growing interest in machine learning-based 

approaches for anomaly detection, which have demonstrated 

superior performance [13]. Therefore, in our previous work, 

we proposed a near real-time anomaly detection method for 

OT systems using hybrid deep learning [14]. The hybrid deep 

learning approach incorporates Graph Neural Networks 

(GNN), Long Short-Term Memory (LSTM), and 

Convolutional Neural Networks (CNN). The deep learning 

model utilizes unsupervised learning techniques to acquire 

knowledge about the intricate patterns of OT network traffic 

throughput, and supervised learning methods to classify the 

OT traffic. Our previous method is implemented in the control 

center to detect cyber attacks at the early stages of the cyber 

kill chain. This is done by monitoring the power system OT 

networks using Software Defined Networking (SDN). 

Notwithstanding, our previous research [14] and other 

research on SDN in power systems poses a challenge owing 

to the limited adoption of SDN in the present power system 

[15]. However, SDN may  be widely deployed in the near 

future. 

The state-of-the-art anomaly detection methods are based 

on real-time traffic monitoring, i.e., Intrusion Detection 

Systems (IDS), that may produce false positives [16] and 

degrade the OT communication performance [17]. Security 

Operations Center (SOC) needs intelligent tools to conduct 

forensic analysis on generated IDS alarms and identify the 

attack locations. The field of digital forensics within OT 

systems is currently in its nascent phase when compared to its 

counterpart in IT. OT forensic analysis may help SOC 

investigate IDS alarms and reduce the number of false 

positives from real-time detection methods. Furthermore, it 

may be used for in depth security investigations without 

disrupting the operation of industrial control systems [18].  

Therefore, in this paper, we propose a novel, graph-based 

forensic analysis method for anomaly detection in power 

systems using OT communication network traffic throughput. 

It employs a hybrid deep learning model involving Graph 

Convolutional Long Short-Term Memory and a 

Convolutional Neural Network. The proposed method aids 

SOC with the continuous OT security monitoring and post-

mortem investigations. Results indicate that the proposed 



 

method is able to accurately pinpoint the locations of cyber 

attacks on power grid OT.  

Compared to our previous research in [14], forensic OT 

traffic analysis also provides more flexibility. The 

implementation of SDN is not a prerequisite for forensic 

analysis, as it can be applied to a broad range of OT 

communication networks, including but not limited to 

substations, control centers, and wide area networks. To 

summarize, the scientific contributions of this paper are as 

follows: 

1) We propose a novel method for forensic graph-based 

analysis of OT traffic throughput based on packet 

historical data, i.e., FGraph. It is purpose-built for the 

detection of anomalies in OT networks by utilizing 

communication traffic throughput in the earlier stages of 

the cyber kill chain. It aids SOC in locating and 

identifying OT system-wide cyber attacks and conducting 

post-mortem investigations through the implementation 

of graph-based deep learning. 

2) Our study presents a novel approach utilizing a hybrid 

deep learning model for the purpose of classifying OT 

network traffic throughput as either anomalous or normal. 

The proposed model integrates Graph Convolutional 

LSTM (GC-LSTM) and a CNN. 

3) We propose FGraph Traffic Pre-Processing (TPP) 

algorithm with Traffic Dispersion Graph (TDG) to 

generate an attack graph model. The graph model is used 

to analyze communication throughput between nodes 

from historical communication packets. Furthermore, the 

time-series throughputs are classified using a hybrid deep 

learning model. The classification results are used to 

identify anomalous nodes, which are represented in an 

attack graph. 

The rest of this paper is organized as follows. Section II 

explains the forensic graph model and anomaly detection. 

Section III describes the simulation result and analysis, and 

Section IV presents the conclusions and future work. 

II. FORENSIC GRAPH MODEL AND ANOMALY DETECTION 

This section presents the proposed techniques for 

detecting anomalies and the forensic graph model. Fig. 1 

provides an overview of the methodology employed in the 

detection of anomalies and the subsequent creation of forensic 

graphs. The data collected from the network in the form of 

historical packets serves as input for the model. There are two 

processes performed for the packets, i.e., TPP and TDG. 

Following the pre-processing stage, GC-LSTM training takes 

place to produce a GC-LSTM model based on normal traffic 

data. This base model was subsequently utilized to predict 

traffic flows based on temporal and topological 

characteristics. The predicted traffic output is subsequently 

subjected to a CNN time series classifier, which identifies the 

traffic flow as either normal or anomalous. The FGraph model 

subsequently generates a graph visualization that is predicated 

upon nodal classification. The following subsections provide 

a more thorough discussion of the method in every stage.  

A. Traffic Pre-Processing and Traffic Dispersion Graph 

Network forensics pertains to the acquisition, 

preservation, and scrutiny of network data with the aim of 

identifying unauthorized access and conducting subsequent 

inquiries [19]. It is a crucial component of network security 

because it enables organizations to quickly detect and respond 

to cyber attacks. Network administrators employ network 

traffic analysis tools to perform network traffic forensics, 

which involves capturing and analyzing traffic data in real-

time or from historical traffic logs. These tools aid in detecting 

network anomalies, such as abnormal traffic patterns or 

unauthorized access attempts, that may suggest security 

breaches or malware infections. Wireshark, Tshark, Snort, and 

tcpdump are well-known network traffic analysis instruments. 

These tools can capture network traffic data and provide a 

comprehensive analysis of the data, including the source and 

destination of the traffic,  traffic type, and any detected 

anomalies or suspicious activity. 

One of the methods to perform a better analysis is through 

network forensic data visualization [20]. A matrix-based 

visualization from network forensic data was presented in 

[21]. The authors show the visualization summary of network 

data, e.g., IP addresses, ports, NetFlow payloads, entropy of 

source and destination IP, etc. The visualizations help to 

facilitate network traffic analysis and pinpoint anomalies 

within the network. An alternative method to visualize the 

network traffic data is using TDG. The TDG is an analytical 

framework utilized for the purpose of observing and 

evaluating communication traffic. The fundamental concept 

behind TDG is based on the interactions between hosts within 

a network [22]. Moreover, TDG employs graph structures to 

represent nodal information. Each individual node in a graph 

represents an individual host within a network. Conversely, 

the transmission of information among hosts is denoted by the 

 
Fig. 1.  Forensic graph  model 



 

interconnectivity of nodes, i.e., graph edges. Previously, the 

TDG was utilized to analyze communication network 

patterns. For instance, a study [23]-[31] proposed an 

application of TDG for anomaly detection based on a graph's 

degree distribution values. As shown in Fig. 1, in this research 

we use TDG to generate a network graph topological 

representation from recorded OT traffic data. 

Beside the aforementioned TDG, in the model we also 

implement TPP for the historical packets. TPP extracts 

information from the packets, i.e., nodes, edges, and time 

series traffic throughput. Algorithm 1 depicts the pseudocode 

of TDG and TPP. The input for the proposed algorithm is 

historical traffic packets (P) captured using Wireshark or 

Tshark. TDG processes the OT traffic to extract Graph 

information (G) from the packets including vertices/nodes (V), 

edges (E), and adjacency matrix (A). Meanwhile, TPP aims to 

extract the packets into time series throughput data for each 

node (X). The extracted graph (G) and time series throughput 

(X) serve as input for the following forensic graph stages. 

Algorithm 1: TDG and TPP Algorithm 

Inputs: P: Historical communication traffic packets 

Outputs: 
𝐺 = {{ 𝑉, 𝐸, 𝐴}}: Graph with nodes, edges and adjacency 

{𝑥1, 𝑥2, … , 𝑥𝑣}𝑡 ∈ 𝑋: Time series throughput data 

1 TDG iteration for each packet p in P 

for p in P do 

2  if v not in G{V} 

3   add v to V 

4  if e not in G{E} 

5   add e to E 

6 end for 

  

7 TPP throughput extraction iteration for each time t in T 

for t in T do 

8  for v in G{V} 

9   𝑥𝑣
𝑡 =  ∑ 𝑥𝑣 

10  end for 

11 end for 

12 return 𝐺 = {{ 𝑉, 𝐸, 𝐴}} and {𝑥1, 𝑥2, … , 𝑥𝑣}𝑡 ∈ 𝑋 

 

B. Graph Convolutional Long Short-Term Memory 

Graph Convolutional Long Short-Term Memory (GC-

LSTM) was adopted to acquire knowledge about the OT 

network traffic patterns. GC-LSTM employs two machine 

learning models, i.e., Graph Convolutional Network (GCN) 

and LSTM. The GCN utilizes graph-based representations of 

the OT network's topological information, in conjunction with 

localized features derived from neighbouring communication 

nodes in the spatial domain. Subsequently, LSTM is employed 

for temporal learning utilizing time-series data of observed 

OT network traffic. The integration of GCN and LSTM 

confers the benefit of acquiring knowledge from both the 

spatial and temporal domains. 

The primary input for the GC-LSTM approach is the graph 

structure of the OT network topology. TDG was used to derive 

this particular graph structure. The Graph (G) elements are 

vertices/nodes (V), edges/links (E), and adjacency matrix (A). 

The adjacency matrix is a representation of elements denoted 

by Ai,j, where i and j are node index numbers. Ai,j equals 1 

when two nodes are connected and 0 when they are not. 
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In (1), the GCN model is predicated on the Hadamard 

product multiplication (⊙ ) of the weight matrix (Wgcn), 

adjacency matrix (A), and node features derived from the 

historical traffic data (Xt). The adjacency matrix is a 

mathematical representation that encapsulates pertinent 

details concerning the topology of the OT network. The 

modified adjacency matrix ( Â ) is obtained by adding the 

identity matrix (I) to the original adjacency matrix (A). The 

time series data set (Xt) is modelled by an equation that 

accounts for a specific time point (t) and the overall number 

of time observations (T). The node feature matrix (X) contains 

information about each node (xi), where n represents the total 

number of nodes. The equation takes into account the 

exponent k, which represents the number of hops from a 

communication node to its neighbouring nodes, as described 

in [23] and [24]. Following the acquisition of spatial features 

through the GCN, the LSTM model is subsequently employed 

to examine the temporal or time-series characteristics. The 

functions and processes that occur within an LSTM cell are 

described in (2–7). The LSTM process comprises six primary 

sub-equations, namely the forget gate (ft), input gate (it), 

output gate (ot), internal cell state (c't), transferable cell state 

(ct), and hidden state (ht). 

C. Time Series Classification and Forensic Graph Model  

Time Series Classification (TSC) was implemented in [26] 

for anomaly detection. In this study, we propose a method for 

detecting anomalies in OT communication network traffic 

using TSC. The method employed a hybrid approach that 

combined unsupervised and supervised methods for detecting 

anomalies in OT traffic. The utilization of unsupervised 

learning for time series data was implemented in [27]. An 

unsupervised GC-LSTM model is employed to acquire 

knowledge of the intricate patterns exhibited by OT network 

data and topology. Following this, the GC-LSTM model 

produces traffic prediction which serves as inputs for the 

TSCs. 

TSC is implemented using a CNN algorithm with a multi-

layer convolutional and ReLU activation function, as depicted 

in equation (8). The variables under consideration in (8) are 

the number of layers (l), filter size (m), weight (w), and bias 



 

(b). The CNN algorithm performs binary classification for 

each node into normal and anomalous. The classification is 

performed based on TSC from time series throughput data for 

each node (X). The result from the classification is then used 

to construct a forensic graph in the following stage.  

1
1

( )Re ( )
m

l l

i iy LU wy b
−

−= +        (8) 

{{ , , }}G i if f V=        (9) 

The forensic graph equation is depicted in (9). The FGraph 

is constructed based on prior knowledge regarding the 

topology of the OT network as well as the results of the node 

classification. The FGraph ( G ) comprises two distinct 

components, i.e., normal nodes (fi) and anomalous nodes (𝑓i̅). 

The nodes classification, alongside with the graph structural 

information, are then used to visualize the FGraph with 

different node colors. The node color variations help the user 

to pinpoint anomaly locations within the OT network 

topology. 

III. SIMULATION RESULTS AND ANALYSIS 

A. Experimental Hardware-in-the-Loop Setting 

Fig. 2 depicts the Hardware-in-the-Loop (HIL) 

configuration utilized for performing the FGraph 

implementation. The Real-Time Digital Simulation (RTDS) is 

used to model the physical power system. IEC 61850 

communication is realized between RTDS and Intelligent 

Electronic Devices (IEDs) through a network switch. The 

IEDs comply with IEC 61850 standard, enabling GOOSE 

messaging and Sampled Values (SV) for measurements. 

During normal operation, the GTNET sends packets to IEDs 

periodically. However, under cyber attack scenarios, the 

packet rate varies. More details on the cyber attack vector are 

provided in our previous work [28],[29]. Based on the co-

simulation setup and cyber attack scenarios, we collect OT 

network traffic data from the switch for later analysis using 

FGraph. 

 
Fig. 2.  Digital substation experimental setup for OT traffic generation. 

B. Open Dataset 

Other than the aforementioned experimental set up, in this 

work, we also analyze multiple open datasets, i.e., IEC 61850 

[30] and DAPT 2020 [31]. In [30], the authors provide 

communication data from digital substation based on IEC 

61850 protocol. The dataset provides OT communication 

traffic data under normal, disturbance, and cyber attack 

scenarios. Normal data are derived from normal traffic 

without and with variable loading. The disturbance scenarios 

include busbar protection, breaker failure protection, and 

Under Frequency Load-Shedding (UFLS). The cyber attack 

scenarios cover Denial of Service, GOOSE injection, merging 

unit measurement spoofing, circuit breaker Boolean value 

injection, and replay attack. 

In [31], the authors generate data based on normal and 

Advance Persistent Threat (APT) traffic with 5 days duration. 

The scenarios implement various stages of cyber attack kill 

chain, including vulnerability scanning, exploitation, establish 

a foothold, privilege escalation, etc. The experiments 

incorporate red team and blue team tools, e.g., Metasploit and 

Snort. The NetFlow data collected from the experiment within 

5 days include source, destination, flow duration, flow byte, 

etc. However, the provided NetFlow CSV data is not suitable 

for our proposed method of TDG and TCC. Therefore, in this 

work, we use the provided raw original source of packet data 

in .pcap format. 

C. Network Traffic Analysis 

 Table 1 summarizes the network traffic data from the 

experimental HIL (A), IEC 61850 dataset [30], and APT 

dataset [31]. Data A and B originate from the substation 

models within a local network, which primarily transmits 

layer 2 broadcast messages using MAC addresses. 

Meanwhile, data C is dominated by layer 3 communication 

using IP addresses. Data C also indicates that the network is 

segregated into private and public networks. Additionally, this 

data has the most accumulated packet history of 5 days, with 

a total size of ~17 GB.  

Table 1: Summary of Network Traffic Data 

Parameters A B [30] C [31] 

No of Nodes 85 103 786 

No of Edges 198 246 821 

Traffic duration 30 minutes 150 minutes 5 days 

Total packet size 50 MB 100 MB 17 GB 

 

 
Fig. 3.  Statistical comparison between normal, predicted, and attack or 

anomalous traffic for data A, B, and C. 

  All the aforementioned data is then processed using a 

forensic graph generation model. The GC-LSTM generates 

predicted traffic that serves as a traffic normalization filter. 

Fig. 3 depicts a statistical comparison as box plots between 

normal, predicted, and attack traffic for all 3 cases. As shown 

in Fig. 3, normal traffic also contains outlier traffic, indicated 

in red dots. These outliers in normal traffic can increase false 

positives in classification. Meanwhile, in the predicted traffic, 

the outliers are significantly reduced. Therefore, GC-LSTM 



 

helps to improve the classification accuracy of the CNN time 

series classifier.  

 
Fig. 5. ROC comparison for data A, B, and C 

D. Anomaly Detection and Forensic Graph 

 The anomaly detection is performed based on TSC using 

CNN. TSC classifies the traffic throughput as normal or 

anomalous. Fig. 5 shows the performance comparison from 

each data in Receiver Operating Characteristic (ROC) curve. 

Data A provides the best result with AUC score 0.819 

followed by data C and data D. Data C shows the worst 

performance because the data contains more noise compared 

the first two.  

 Fig. 4 shows the forensic graph plot from the 

aforementioned dataset. The blue node represents normal 

traffic, while the red one represents anomalous traffic. Fig 4. 

a, b and c show the graph representation from normal traffic, 

while the others shows the graph under attack scenarios. The 

cyber attack scenarios include GOOSE attack, 

reconnaissance, data manipulation and foothold 

establishment. 

E. Result Analysis 

From the experiment, data A and B provide better anomaly 

detection compared to data C. The reason is because the first 

two data are homogenous OT traffic. Meanwhile, data C is IT 

traffic that has more a heterogeneous characteristic. This 

characteristic is also shown in Fig. 3. Therefore, FGraph is 

more suitable for throughput anomaly detection in OT 

network. 

Compared to our previous research in [14], the 

performance of FGraph is slightly lower because the FGraph 

input consists of packets captured with Wireshark. Other 

research has already identified problems related to Wireshark 

time inaccuracy [32],[33]. The Wireshark packet timestamp 

is inaccurate because it does not reflect the actual packet 

arrival or departure time. In particular, they are dependent on 

the time necessary for the kernel to process packets and 

access the clock. Regardless of its limitation, FGraph can 

 
Fig. 4.  Forensic graph plot from normal traffic and anomalous traffic. 



 

become an alternative solution for graph-based forensic 

analysis tools in OT communication networks for power 

grids. 

IV. CONCLUSIONS AND FUTURE WORK 

The raising risk of cyber attacks on power grids has 

prompted a need for enhanced attack detection capabilities in 

OT systems. In this work, we proposed FGraph, a hybrid 

model of GC-LSTM and CNN for anomaly detection in OT 

communication networks for power grids. Forensic analysis 

on OT network traffic data aids SOC in localizing and 

identifying cyber attacks. GC-LSTM creates OT traffic 

predictions based on the spatial and temporal features of the 

input data. Through its predictions, the data variability and 

outliers are reduced. GC-LSTM enhances the anomaly 

detection performance of the CNN classifier. In this 

implementation, the detection performance is limited due to 

the scarcity of data for training and testing. In the future work 

more experiments are required to improve the performance of 

FGraph. 
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