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Abstract—Sensor attacks on grid-tie photovoltaic (PV)
inverters can cause severe damage. Considering uncertain
environments and unknown model mismatches, real-time
estimation and defense for sensor attacks on actual PV
inverters are challenging. In this article, we propose an
optimization-driven robust estimator within the attack fre-
quency range using the H∞ index, while the model mis-
match effect on estimation is also minimized. To improve
the real-time response under varying environments, an an-
alytical solution from a convex quadratic programming re-
formulation is constructed. Guided by the estimation, we
further develop a closed-loop compensation strategy with a
tracking controller and a low-pass filter. Through code port-
ing, our proposed defense strategy has been implemented
in a microcommercial PV inverter. Hardware implementa-
tions show that our defense approach can effectively mit-
igate sensor attacks and maintain stable inverter operation.

Index Terms—Hardware implementation, photovoltaic
(PV) inverter, real-time robust estimation, sensor attacks,
time-varying.

I. INTRODUCTION

T
HE embedded sensors in photovoltaic (PV) inverters are

crucial for safe power conversion. However, PV inverters

are frequently installed in less secure areas and the growing

presence of third-party entities can complicate the security

landscape, heightening the risk of sensor attacks via physical

and cyber methods [1]. For instance, the physical attack “Hall
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Spoofing” [2] injects errors into current sensors of inverters

using an external magnetic field, and the cyber attack “Horus”

[3] exposes sensor data to integrity attacks. They can cause the

victim inverter to reduce output power, shut down and even

physically burn out. Thus, it is urgent to develop real-time

estimation and defense approaches to protect PV inverters.

Previous studies have investigated the defense methods

against sensor attacks from data-driven and model-based per-

spectives. Research works have utilized multiclass support vec-

tor machines [4], and long and short-term memory networks [5]

to achieve attack detection. However, data-driven approaches

are highly dependent on the quantity and quality of the ac-

cessible data and thus can be intractable somehow. To our

knowledge, digital signal processors (DSPs) have been com-

monly utilized in PV inverters [6]. They are characterized

by modest computing power and storage, exemplified by the

TMS320F28035 in our experiment (60 MHz CPU frequency,

128 kB of flash memory, and 20 kB of RAM). Such constraints

pose challenges in implementing complex data-driven algo-

rithms. For model-based approaches, research in [7] has pro-

posed a Kalman filter and adaptive cumulative sum chart to

detect the low-frequency spoofed sensor data. The work in [8]

studies the impact of side-channel noise intrusion on invert-

ers with a model-based mitigation strategy. Yet many of them

overlooked model parameter variations due to environmental

factors, as well as mismatches between the mathematical model

and the physical inverter, leading to performance degradation

and challenges in hardware implementation.

To tackle these, we develop a real-time sensor attack es-

timator for the parameter-varying PV inverter and estab-

lish a lightweight defense approach. First, we introduce a

time-varying model of the inverter and obtain the model

parameters through system identification. Then, we propose

an optimization-driven robust estimator using the H∞ index

and alleviating model mismatch effects on attack estimation.

We further propose an analytical form of the estimator to cope

with real-time environmental variations. Next, the estimation

outcome is utilized to devise a feed-forward compensation strat-

egy into the inverter’s control loop. Hardware implementations

show that our proposed estimator and defense approach effec-

tively mitigate potential severe damage.
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Fig. 1. Grid-tie PV inverter under sensor attacks.

II. THE TIME-VARYING PV INVERTER MODEL

Fig. 1 illustrates that attackers can launch physical or cyber

attacks on inverter’s voltage and current sensors. A physical

two-stage PV inverter can be modeled by integrating the physi-

cal plant and the control loop, which has been developed in the

previous work [9], [10]. To construct a more realistic inverter

model, we consider that the optimal output voltage and current

of PV panels may vary with environmental factors (e.g., temper-

ature and irradiance), leading to a time-varying operating point

of the inverter. Thus, the linear time-varying inverter model

under sensor attacks can be described by

x(k + 1) =A(wk)x(k) +Buu(k) +Bff(k) +Brr(k)

y(k) = Cx(k) +Dff(k) +Drr(k) (1)

where x(k) denotes physical states of the inverter and also con-

trol intermediate variables, u(k) is the input signal, r(k) is the

compensation signal to be designed later, and y(k) represents

measured output of voltage and current. Here f(k) denotes

sensor attacks on the output of PV panels, the dc-bus voltage,

and the inverter output current. A(wk) is the parameter-varying

matrix with the environmental factor w (from a set W ∈ R
nw ).

The coefficients matrices Bu, Bf , Br, C, Df , and Dr have

compatible dimensions.

We first analyze the hardware circuits and the available open-

source control code to obtain part of the model parameters.

Then we gather hours of input and output data from the phys-

ical inverter in a constant environmental setting. These data

are utilized for system identification, based on Levenberg–

Marquardt’s least-squares search method with fixed partial pa-

rameters [11]. Once all the system parameters for the current

case are acquired, the system matrix A(wk) can be recalculated

by the physical relationships, accounting for changes in w.

In many practical scenarios, attack signals often target at spe-

cific frequencies to deliver customized damage [12]. Note that

the attack signal in this article refers to the signal superimposed

on the sensor measurement. Our goal is to devise a robust esti-

mation and defense approach within a specific attack frequency

range, based on the input signal u(k) and the measurement

y(k). To achieve that, we first rerepresent (1) with a more

compact difference algebraic equation (DAE) formulation

H (wk, q)X(k) + L (q) z(k) + F (q) f(k) = 0 (2)

where q= ejθ represents the time shift operator and θ denotes

the frequency within the range [ϑ1, ϑ2]. By defining z(k) :=

[y(k)T u(k)T ]T , X(k) := [x(k)T r(k)T ]T , the polynomial

matrices H (wk, q), L (q), F (q) in q can be expressed as

H (wk, q) :=

[

−q+A (wk) Br

C Dr

]

, L (q) :=

[

0 Bu

−I 0

]

,

F (q) :=

[

Bf

Df

]

.

III. DEFENSE OF PV INVERTER SENSOR ATTACKS

For the DAE (2), we introduce an estimation signal e con-

sisting of linear transfer functions in the following form:

e(k) :=R(w, q)z(k) := a−1(q)N(w, q)L(q)z(k) (3)

where R(w, q) is the transfer function from the available signal

to the estimator. We propose a formulation that R(w, q) :=
a−1(q)N(w, q)L(q) where N(w, q) is the polynomial with co-

efficients to be designed for a fixed denominator a(q) with

a low order to reduce overhead in real-time implementation.

The estimation signal is designed to decouple the unknown

dynamics to minimize the impact of environmental factors and

system states on the estimation, which indicates

a−1(q)N(w, q)H (wk, q) = 0, ∀w ∈W, θ ∈ [ϑ1, ϑ2] . (4)

By design, our estimation signal can be varied with w to ensure

that the above equation holds at every moment. For an accurate

estimation, the estimation signal is expected to follow and ap-

proximate the attack signal f . By combining (2) and constraint

(4), we aim to find a stable R(w, q) such that

e(k) =−a−1(q)N(w, q)F (q)f(k)≈ f(k), θ ∈ [ϑ1, ϑ2] (5)

Gef (q, w)f(k)− I ≈ 0, θ ∈ [ϑ1, ϑ2] (6)

where Gef (q, w) =−a−1(q)N(w, q)F (q). Notably, achieving

Gef (q, w)f(k)− I = 0 for all θ ∈ [ϑ1, ϑ2] is unattainable due

to its infinite equality constraints. To render the constraint

tractable, we introduce the finite H∞ norm for (6)

||Gef (q, w)f(k)− I||H∞(θ)≤ η, θ ∈ [ϑ1, ϑ2] (7)

where η is the upper bound. Using η as the optimization objec-

tive can narrow the gap between the estimation and the attack

signal. Moreover, accounting for interference and nonlinearity

inevitably results in a model mismatch between the linear

model (1) and the actual PV inverter. We introduce a model

mismatch signature matrix Q̄ [13] into the optimization ob-

jective to mitigate the effects of model mismatch on attack

estimation. Q̄ is a positive semi-definite real matrix obtained

through prior inverter operations.

The design of the estimator parameters can be transformed

into an optimization problem by expressing the constraint (7)

as linear matrix inequalities through the GKYP lemma. To

achieve a timely estimation and response, we construct an

optimization-driven robust estimator with an analytical solution

for the estimator parameters. We relax the constraint (7) by

letting Gef (q, w) approximate the identity matrix at selected

frequency points instead of the whole range [ϑ1, ϑ2]. More



specifically, the optimal parameters of the estimator N∗(w) can

be derived by solving the problem

N∗(w) := arg min
N(w)

n
∑

i=1

(αi + βi) + µN(w)Q̄N(w)T

s.t. N(w)H(w) = 0 (8a)

Re
(

Gef

(

ejθi , w
)

− 1
)2

≤ αi, ∀i= (1, 2, ..., n) (8b)

Im
(

Gef

(

ejθi , w
))2

≤ βi, ∀i= (1, 2, ..., n) (8c)

where µ is the weighting factor, Re(·) and Im(·) denote the real

and imaginary parts of a complex number, n is the number of

selected frequency points, and θi is the ith frequency point. Note

that a one-dimensional attack signal is considered in (8), but it

can be extended to multidimensional sensor attacks. This design

exhibits computational tractability, owing to its formulation as

a convex quadratic optimization (QP) problem. Considering

the Lagrange dual of (8), an analytical solution of (8) can be

obtained

N∗(w, λ) =−
1

λ

n
∑

i=1

Re(Ψi)

(

n
∑

i=1

λ−1(Re(Ψi)
2 + Im(Ψi)

2)

+ λ−1µQ̄+H (w)HT (w)

)−1

(9)

where Ψi = a(q)−1F (q)
∣

∣

q=ejθi
and (9) reaches the optimal

solution of (8) as λ tends to ∞. When the environmental factors

change, the estimator can quickly recalculate to get N∗(w)
based on the change of H (w). Thus, we offer a lightweight

approach for a real-time robust estimator that can promptly

adapt to parameter changes and model mismatches.

We provide a remark on the lower bound of optimality. The

selective approach imposes constraints only on a subset of

the frequency points. This estimator obtains a lower bound on

optimality for the original optimization problem. However, the

degradation in performance at nonselected frequencies can be

minor for a large n (it still exhibits computational traceability

due to the convexity) and a uniform selection strategy.

Based on the estimator, we further propose an active com-

pensator that integrates a tracking controller along with a low-

pass filter, as shown in Fig. 1. As the compensation signal

comes after the attack signal, we add a differential operator into

the tracking controller part to prevent the compensation signal

from lagging behind the attack. This design could counteract

the attack effects. The tracking controller uses a proportional

differentiation algorithm and can be described as a one-pole-

one-zero discrete-time transfer function

Gc =
kc1q+ kc2

q+ 1
(10)

where kc1 and kc2 are proportional and differential coefficients.

Further, a second-order discrete-time low-pass filter suppresses

potential high-frequency noise. Thus the whole active compen-

sator can be expressed as

Gcom =
kn3q

3 + kn2q
2 + kn1q+ kn0

kd3q
3 + kd2q

2 + kd1q+ kd0

(11)

Fig. 2. Flowchart of the implementation procedure. (a) Inverter sig-
nal collection. (b) System identification. (c) Attack estimator. (d) Active
compensator.

Fig. 3. Experimental setup.

where kni and kdi(i= (0, 1, 2, 3) relates to kc1, kc2 and the

cut-off frequency. To defend against sensor attacks, the active

compensator delivers the compensation signal r to the control

loop. For a better illustration, the hardware and software imple-

mentation of our approach is outlined in Fig. 2.

IV. EXPERIMENTS AND DISCUSSION

To verify the proposed defense approach for sensor attacks

on PV inverters, we conducted hardware experiments on a mi-

crocommercial PV inverter. The hardware experimental setup

includes a TI C2000 Solar Micro Inverter with its driven DSP

controller, PV panel emulator, and physical attack signal gener-

ator & transmitter, as shown in Fig. 3. The oscillograph displays

the real voltage and current by the measuring probes.

A. Experimental Results

To evaluate under real sensor attacks, we perform a physical

attack using an innovative electromagnetic interference (EMI)

method. The principle of the attack can be found in [14]. For the

efficient EMI injection, we use an EXG vector signal generator

as the signal source (9 KHz–6 GHz). The amplifier HPA-50W-

63+ is used to amplify the output signal to 10 W. Then we use

a high gain log-periodic directional antenna to transmit EMI

signals with +14 dBi. By frequency sweeping, we can identify

the frequency of EMI signals that the sensors on the PV output

side, DC-bus side, and AC side are “sensitive” to, as shown in

Table I. This physical attack can inject up to 354% anomalous



TABLE I
EMI IMPACT ON INVERTER SENSORS

Sensor
Position

Sensor
Type

Sensor
Model

Measurement
Range

Test Parameters Output

Freq (MHz) Pow (W)
Original

Value
Devation

Devation
Rate (%)

Ipv DC Current ACS712 0–20 A 850 10 2.2 A 1.65 A 75

Vbus DC Voltage OPA2171 0–418 V 1140 10 385 V 33.44 V 9

Iout AC Current LTSR6-NP −20 A–20 A 1280 10 0.24 A 0.85 A 354

Fig. 4. Real current after the step attack and defense. (a) Effect of the
step attack. (b) Affter our defense method.

measurements at a power of 10 W, causing a serious threat to the

inverter operation. We illustrate the effectiveness of our defense

through two attack forms: step and sinusoidal. A step attack can

be implemented with a constant-intensity EMI signal at a fixed

frequency point, while a sinusoidal one is achieved through

amplitude modulation of the EMI signal using a modulation

signal at 5 Hz.

In the hardware implementations, we set the estimator degree

dN = 7, the denominator a(q) = (q+ 0.5)dN . The selected fre-

quency points are 0, 10, 20, 30, 40, 50, and 60 Hz. The optimal

parameter of the estimator is obtained by solving (9). Next,

we port the code of our lightweight defense approach to the

DSP controller of the micro commercial inverter. We implement

a step attack on the PV panel output current sensor and a

sinusoidal attack at 5 Hz on the DC bus voltage sensor. Note

that the attack on the Iout immediately triggers the off-grid

protection, making it difficult to implement our defense strat-

egy. The attack on the PV panel output current sensor could

interfere with the operation of the MPPT algorithm and impede

the inverter from achieving maximum power. The changes in

real inverter output current under a step attack are illustrated

in Fig. 4. Here the current probe converts the actual current

Fig. 5. Real dc-bus voltage before and after the defense. (a) Effect of
the sinusoidal attack. (b) After our defense method.

value by 1 A/100 mV. The reduced output current indicates

a decrease in inverter output power. Under normal operation,

the average output power is 90 W, which is reduced to 62 W

after the attack. Thirty-one percent of the wasted output power

could cause power shortages in microgrids. Fortunately, our

defense method can restore it to 88 W, eliminating the majority

of the power reduction in 100 ms. The time to mitigate the attack

is much faster than the time for grid scheduling and control.

Fig. 5(a) and 5(b) illustrates the real dc-bus voltage before and

after our defense method. The high voltage differential probe

measurement reduces the actual value of the current by a factor

of 500. The results show that the sinusoidal form of the attack

causes dramatic fluctuations in the dc-bus voltage, which can

lead to inverters going off-grid by triggering the over/under-

voltage protection. Once more, our defense approach can mit-

igate the fluctuations after a 230 ms transient process. Here

we can use the peak-to-peak values to describe the severity of

the fluctuations. After “removing” the normal fluctuations, our

defense method reduces the voltage fluctuations to 19.2% of

the attack case and keeps dc bus voltages within the acceptable

limits. We have uploaded a video demo to the link [15] to show

the process. We note that it remains challenging for the defense



to completely mitigate the effects of attacks in hardware exper-

iments. This is mainly because, although we have alleviated the

model mismatch effects on attack estimation in (8), it is hard to

eliminate it completely through the selection of the weighting

factor µ. Nevertheless, as demonstrated by experimental results,

our defense method still effectively mitigates the attack impact

and ensures stable inverter operations.

B. Discussion

1) Output Power: The microcommercial inverter we used in

the experiments supports a maximum output power of 280 W.

However, due to safety considerations and constraints on grid-

connected power in the laboratory, evaluation with high power

may damage the inverter and other devices. Therefore, we

evaluate the effectiveness of our defense approach within the

permissible range of the inverter’s output power.

2) Scalability: Considering the safety, the experiments in

this article are carried out on a low-power microinverter. For

other PV inverters, the power and frequency of the EMI signal

for effectively launching sensor attacks may vary. Despite the

differences in inverter hardware, one can integrate physical

priors and employ a system identification to obtain the inverter

model. Then, through our proposed method in (1)–(11), the

estimator and compensator parameters can be derived.

3) Sensor Faults: The inverters’ sensors may also face mul-

tiple types of faults. For stuck and drift faults, the fault signal

can be represented as a step or ramp, whose frequency com-

ponents are concentrated around 0 Hz. We can use the current

design to estimate and compensate faults. For the gain fault, one

may not achieve an accurate estimation as (8a) is not met, but

can analyze the indicative signal e to detect the fault.

V. CONCLUSION

This article have proposed a viable solution for robust esti-

mation and defense against sensor attacks on actual PV invert-

ers, considering environmental changes and model mismatches.

We develop an optimization-driven approach and present an

analytical solution form of the estimator to enhance real-

time response. We further develop a closed-loop compensation

strategy to mitigate the impact of sensor attacks. We hope

that our work raises awareness of power inverter security and

proposes implementable defense strategies.
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