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Abstract—Energy systems experience a rise in complexity: new
technologies, topologies and components, tighter links to other sys-
tems like markets and the increased usage of information tech-
nology. This leads to challenging questions that can not be an-
swered via traditional methods. The goal of including renewable
energy and clean technologies in the grid, however, requires solu-
tions for the resulting complex problems.

This paper investigates dynamic demand response for intelligent
electric vehicle charging as a use-case for detailed hybrid models
that cannot be properly handled by traditional tools alone. Uni-
versal modeling languages and specialized domain-specific mod-
eling solutions are brought together via standardized co-simulation
interfaces to achieve maximal flexibility and minimal implementa-
tion efforts.

This combination of previously numerically incompatible mod-
eling paradigms enables a detailed look into the dynamics of hybrid
component models while keeping the comfort and the strength of
established tools. This coupling of a Modelica-based physical sim-
ulation engine, a commercial power system simulation tool and an
agent-based discrete event simulator for energy grids results in a
novel co-simulation platform. This visionary concept provides the
high level of detail, scope, flexibility, scalability and accuracy in
simulations needed to analyze and optimize energy systems of the
future.

Index Terms—Charging management, co-simulation, electric ve-
hicles, flexible-demand, modeling, simulation software.
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I. INTRODUCTION

NTELLIGENT energy systems are expected to utilize the

demand flexibility to increase the self coverage with the
help of renewable and distributed energy generation. Demand
side management mechanisms like real-time pricing (RTP) or
dynamic physical demand response (DR) [1] will automatically
control loads to flatten peak consumption. Renewable and
distributed generation impose high fluctuations on small time
scales, like minutes down to seconds, with a strong dependency
on local geographical situations. RTP based on hourly price
signals, is an adequate measure for market-based DR on an
energy-based global level. But an hourly lag time between
price signals is not capable of reflecting the actual real-time
supply/demand situation regarding power flow and voltage
situations in the electricity network [2], [3]. Appropriate DR
mechanisms for grid operation are interruptible or demand
reducing contracts [2], which can take physical constraints
(e.g., thermal loading, voltage levels) as well as local market
constraints or system constraints into account.

Intelligent controls for these mechanisms have real-time
constraints of seconds to minutes, depending on their objec-
tives (e.g., power quality in EN 50160). They use information
technology to integrate intrinsically with related domains like
emerging energy markets. From the energy market perspective,
electric power is seldom taken into account, which is the most
important thing from the grid operation perspective. Increasing
numbers of distributed actors and control components lead to
unprecedented complexity [4]. Feedback loops, autonomous
strategies and variable structure dynamics pose severe problems
for traditional modeling and simulation approaches [5], [6]. A
change of an hourly price signal might have transient effects
or cause oscillations and even instabilities on the distribution
grid. The automatic change of set points can directly influence
the price. Usually reserve and balance requirements based on
peak demand forecasts do not take price responsiveness into
account [2]. The reactions of a large number of participating
players have to be simulated on a much smaller time scale,
perhaps even with real-time constraints in order to be able to
make profound conclusions.

For representing DR activities, models should be comprehen-
sive, based on physics, interactive and reasonably aggregated
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[7]. This makes it absolutely essential that continuous elements,
discrete and asynchronous events, stochastic elements and au-
tonomous actors can be seamlessly integrated within a single
model. While there are powerful methods, formal languages and
tools for each of these categories, it is their combination that
is still in its childhood. Probably the currently most mature ap-
proach to cover as many aspects of future energy systems within
a single simulation environment is the GridLAB-D project [5].

This paper explores the capabilities of combining
GridLAB-D with one of the state-of-the-art tools, Power-
Factory [8], and with a universal modeling environment,
OpenModelica [9], to create a versatile platform for simulating
flexible EV charging algorithms for demand response. The
main contribution of this work is to show the modeling capabil-
ities provided by a flexible simulation environment composed
of a heterogeneous set of simulation tools, to cope with system
complexity by scalability and modularity. Namely, we demon-
strate the possibilities and strengths of standardized coupling of
a universal modeling approach with highly specialized, domain
specific energy simulation tools. The given application—EV
charging as flexible demand—is delivered by a real-world
research project and it contains all of the four distinct types of
sub-models mentioned above.

II. STATE OF THE ART

Electric vehicles are assumed to play an ever more important
role in the electric distribution grid. Due to the challenges they
pose and the opportunities they offer, there is a large number of
studies available that assess their potential impact by the means
of simulation. These simulation studies cover a broad field of
topics, ranging from evaluations of the impact on the distribu-
tion grids, optimal charging algorithms, to traffic based demand
models.

A. Traffic Simulation and Routing

In [10], an agent-based traffic demand model [11] is used in
micro-simulations to estimate the energy demand over the day.
Price signals are sent from the power system simulation to as-
sure that the resulting charging patterns do not violate given
grid constraints. Coupling of transportation information for lo-
cating and routing to the nearest charging point is proposed in
[12], using a model of public transport to include less congested
charging points.

B. Energy Demand

A large number of publications deals with the modeling and
the estimation of the expected energy demand due to electrifi-
cation of individual transportation, especially in relation with
future penetration scenarios.

Micro-simulation-based activity models are used in trans-
portation research for traffic forecasting. In [13], the resulting
trip length distributions are used in combination with generated
schedules to predict energy and power demand geographically
and over the day.

Especially important is the forecast of the energy demand
for scheduling the generation and allocation of energy on the
market. This has been done within nationwide or global scopes
[13] and on the distribution level (e.g., [14], [15]).
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C. Power Electronics

The grid interface is also subject to extensive research. The
topics range from on-board and stationary chargers through cir-
cuit topologies and wireless charging to the interface specifica-
tion for controlled charging protocols. An excellent overview
of the current status and implementation of battery chargers,
charging power levels and infrastructure for plug-in electric ve-
hicles and hybrids is given in [16].

D. Charging Algorithms and Impact on the Grid

The optimization of the charging process is concerned with a
variety of objectives:

» Constraints: voltage limits, maximum transmission ca-

pacity and battery cycles.

* Q@rid operation: minimization of losses in the grid, e.g.,

load-oriented.

» Distributed resources: vehicle-to-grid (V2G) capabilities,

e.g., providing peak power.

e Market: price-oriented dynamic tariffs, e.g., customer

costs reduction.

* Supply-oriented: integration of renewable energies and

mitigation of fluctuations.

The corresponding control algorithms are based on centrally
coordinated, decentralized and distributed mechanisms and
rely on communicating control and measurement signals. Con-
trolled charging usually relies on dedicated measurements to
limit the consumed active power or on utilizing reactive power
for voltage control.

In [12], a decentralized architecture is proposed in which
every charging point calculates the maximum available
charging power based on the demand and power factor of all
available customers. Broadband communication and symmetric
loads are assumed to simplify and speed up the calculation.
The comparison between global and local optimal scheduling
of charging and discharging to minimize total costs for the
customer is demonstrated in [17]. The corresponding simula-
tions are based on hourly load profiles. Reference [18] deals
with the optimization of the charging of an aggregated EV
fleet that decreases customer costs while reducing system load
impacts. The conclusions are based on accumulated measured
load profiles on system level.

In [19], the charging management is based on a dynamic
distribution system tariff to avoid congestion in the local
distribution system, based on predicted day-ahead planning.
Coordinated charging to minimize power losses, based on sto-
chastic programming taking forecast errors of the load profiles
into account, can be found in [20]. The impact on voltage
levels is analyzed in depth for summer and winter scenarios,
but without considering an additional temperature-dependent
energy demand for the EV.

Reference [21] describes a hybrid simulator for EV charging
applications, [22] combines it with market mechanisms. Refer-
ence [23] even analyzes EV charging with stochastic environ-
ments.

E. Shortcomings of Commonly Used Models

Models for the analysis of these applications and phenomena
are usually based either on universal languages (like Matlab)
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or implemented explicitly analytic. Often, models of sub-com-
ponents need to be simplified and it is hard to include expert
modules for batteries, vehicle usage or market rules that would
expose more sophisticated behavior.

Studies proposing new EV charging algorithms to facilitate
load-shifting or prevent congestion usually employ simplifying
static models. Typically the charging profiles are determined
based on an energy demand derived from tracked driving pat-
terns of normal combustion cars. Realistic demand profiles are
replaced by taking only the average energy demand of an elec-
tric vehicle into account, see e.g., [24], [25].

Models considering net effects, e.g., overall energy balances,
are only valid and suitable when using simulation time steps
that are far too coarse to account for critical incidents in the
distribution grid. Even though these considerations are essential
proof-of-concept studies, many critical questions, regarding for
instance grid stability, remain thus untouched on the level of
detail needed for real-world applications.

Particularly by using dynamic models for the battery system
different aspects can be investigated, like stability of control
loops, impact of varying environmental parameters (e.g., tem-
perature), different charging power requirements, voltage-de-
pendent charging duration, road conditions or height profiles.
Static profiles of the battery’s state of charge cannot provide this
flexibility.

III. SIMULATION PLATFORM PROTOTYPE

The immense work that lies behind rich and validated com-
ponent libraries of domain-specific tools makes a re-implemen-
tation in another specific language practically unfeasible. Ad-
ditionally, the need to investigate new phenomena and applica-
tions power systems makes it vital to be capable of integrating
such tools within modern flexible modeling environments. This
is especially true when testing and validating flexible-demand
management systems by means of simulation, since such sys-
tems typically consist of complex components comprising var-
ious technologies from many different domains. Even more,
they are also (directly or indirectly) influenced by other, non-
technology-related factors, like consumer behavior, traffic or
weather.

The goal of this work is the implementation of a prototype
platform specifically designed for the dynamic, interacting sim-
ulation of flexible-demand EV charging management systems.
The following aspects were considered as guidelines to achieve
this objective:

 [Interoperability: To profit from existing domain-specific
solutions a simulation platform needs to facilitate the syn-
chronous deployment of different tools.

* Modularity: A modular design is essential in order to guar-
antee flexibility, preferably by means of object-oriented
methods.

* Scalability: Detailed models and use-cases potentially
comprise a high amount of components and computational
effort. By means of co-simulation, models can be sepa-
rated and distributed over multiple computation nodes.

1941

(GridLAB-D)

driving behaviour distributions
(departure, duration, length)

< trip
data

—¥ a
electric charging point group |||
vehicle !
] charging
schedule management
battery R ‘ ‘
\

| charging point
Charger HJPcha(ge‘ ERER !

simulation control

=

~
! Pcharger Pset

s
J/Q\ Pchargerv

distribution grid
(PowerFactory)

FMI

battery model
(OpenModelica)

Fig. 1. Simulation environment: schematic view of the simulated components
and their interfaces.

* Usability: A simulation environment has to provide the
utilities to allow the proper modeling and analysis of ap-
plications, including an adequate modeling language, data
logging and visualization tools.

To this end, GridLAB-D was adapted to fit the specified require-
ments and was coupled with OpenModelica and PowerFactory
(see Fig. 1). The coupling of GridLAB-D and OpenModelica
demonstrates the seamless interplay of continuous (equa-
tion-based) elements with discrete (event-based) elements
within a co-simulation environment, based on the standardized
interface specification FMI (Functional Mock-up Interface)
[26]. The coupling of GridLAB-D with PowerFactory demon-
strates the advantages gained from using a domain-specific
utility within a general co-simulation environment.

A. GridLAB-D

GridLAB-D [5] is an open-source simulation and analysis
framework for power distribution systems. Its core is a discrete
event-based simulator together with a set of modeling and anal-
ysis tools.

Within the scope of this work, GridLAB-D is responsible for
the simulation of the electric vehicles, the charging process to-
gether with the charging management and the simulation con-
trol. Each component of the simulated system is represented by
a dedicated object in GridLAB-D. Conceptually, these objects
are concurrently executing entities that are by themselves re-
sponsible to update their internal state according to the global
simulation time. The simulator looks for changes in the states of
the objects (discrete events) and enables the synchronized inter-
action between them. The object tells when the next change of
its state will happen, respectively when it wants to be updated
the next time. Due to this mechanism the time steps between
the events are typically not equidistant, but adapt according to
the model’s dynamics. If any update occurs, all objects will be
synchronized at the actual simulation time.

GridLAB-D ’s modeling language is used for defining models
and allows to generate a hierarchical population of objects by
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nesting them. An example of a typical resulting structure for
the EV models used in this work can be seen in Fig. 1.

B. OpenModelica

OpenModelica [9] is a general-purpose multi-physics simu-
lation environment that comes with a large standard library of
components from various domains, e.g., electrical, thermal, me-
chanical or control-oriented elements. It is based on the Mod-
elica language which was initiated as a specification language
for describing differential algebraic equation-based models, al-
lowing model exchange among various modeling tools and dif-
ferent working groups [27].

In contrast to a block-diagram approach (e.g., Simulink), it
relies on universal acausal modeling concepts (e.g., energy con-
servation laws in physical domains). This approach has led to
considerable progress in the simulation of heterogeneous sys-
tems, i.e., systems comprising elements from different simula-
tion domains [28].

In order to incorporate Modelica models into the presented
framework, well-established modern standards for co-simula-
tion are employed. OpenModelica provides the ability to export
stand-alone components according to the standardized interface
specification FMI for Model Exchange [26], the foundation
for a new trend of co-simulation-based applications [29]-[31].
These self-contained components are used to accomplish the
coupling to GridLAB-D. This is done by deploying a dedi-
cated FMI wrapper developed for the synchronous interaction
between these continuous equation-based components and
the discrete event-based simulation environment provided by
GridLAB-D.

C. PowerFactory

DIgSILENT PowerFactory, a specialized and well-estab-
lished power system simulation and analysis tool, is used to rep-
resent the electric grid and the supply side. It provides various
dynamic models and controls which can be scripted to analyze
e.g., frequency demand response [8] and has built-in interfaces
to make use of other applications, like Matlab/Simulink, OPC
server/client access or via external dynamic-link libraries. It
supports offline and time-synchronized real-time simulation
for validating control algorithms or connecting to real process
data [32].

In addition, an interface for coupling other applications with
PowerFactory is available. Within the scope of this work, a ded-
icated C++ API wrapper has been developed on top of this in-
terface, which is used to parametrize and steer simulations in
PowerFactory as well as to access the corresponding results.

IV. ELECTRIC VEHICLE AND INFRASTRUCTURE MODEL

The simulation components for modeling electric vehicles,
vehicle usage, charging station infrastructure and demand-side
management have been implemented in GridLAB-D, while
the vehicle batteries and the electric grid were implemented
in OpenModelica and PowerFactory, respectively (see Fig. 1).
The employment of such domain-specific and well established
state of the art tools provides an adaptable design that can be
elaborated for more sophisticated applications.

IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013

charging charging
point point
available  / unavailable
begin i
new I searching
journey
A
end
current
journey
resume interrupt
current current
journey journey

Fig. 2. Schematic view of the possible states and transitions of the electric ve-
hicle model.

A. Electric Vehicles

Electric vehicles are modeled as finite state machines, with

the states corresponding to the possible operating modes:

* Connected: The electric vehicle is connected to a charging
point and the battery is being charged. It stays in that state
even if the battery is fully loaded and stopped charging.

* Driving: The vehicle consumes energy from the battery for
locomotion, air condition and other appliances, based on
average values.

* Parking: The vehicle does not consume energy for loco-
motion but is not connected to a charging point. It might
however consume energy for air condition and other appli-
ances.

» Searching: The vehicle is searching for an available
charging point. If the designated charging point is not
available, the electric vehicle remains in this state, other-
wise it starts charging immediately.

Fig. 2 shows a schematic view of the states and the allowed
transitions in the electric vehicle model. The behavior of the
states can be easily modified to account for different models of
energy consumption due to route selection, traffic conditions,
air conditioning or other appliance usage.

B. Vehicle Schedule

The actual sequence of state transitions of a vehicle model
during a simulation run is determined by a vehicle’s schedule.
This schedule represents the behavior of the driver and can in
principle be arbitrarily complex in order to model realistic sce-
narios, including for instance active consumer participation via
specific charging requirements.

A reasonable yet simple schedule has been implemented for
the purpose of this paper to serve as a proof of concept. When-
ever a vehicle is not connected to a charging point, it defines
journeys with the help of sequential states called outbound trip,
parking and return trip. The vehicles are driving when either an
outbound trip state or a return trip state is active, and they are
parking otherwise. Since the driving process itself is not sub-
ject to the investigation, it is assumed that when on a journey, a
third of its complete duration is spent for the outbound trip, for
parking and for the return trip, respectively. The total traveled
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Fig. 3. Example for fitting the distribution of Atconnec: (red dashed line) from
car rental data. The data points show the distribution of the time that cars remain
unrented after they were returned to the rental station between 4 p.m. and 5
p-m. In the proposed EV simulation scenario this corresponds to the distribution
of the time that the electric vehicles stay connected to a charging point (see
Section V).

distance of a journey is split equally among the outbound trip
and the return trip. Note that it was assumed, that charging is
not possible during the journey.

During simulation, periods of charging and journeys are
alternating according to a Markov chain. Their respective
durations are drawn from statistical distributions, that depend
on the time of day and/or the travelled distances. The according
distributions have been extracted by fitting available real-world
car rental data (see Section V) with simplifying models, e.g.,
exponential or Gaussian distributions. Fig. 3 shows an example
where the time span At onnect, for which vehicles stay con-
nected to a charging point if they arrive (and possibly start
charging) between 4 p.m. and 5 p.m., is fitted from car rental
data with a combination of an exponential and a Gaussian
distribution.

The schedules are also responsible for choosing a new
charging point after every trip. In the current implementation
this is done randomly within a group (representing a location).
In case no charging point is available, a vehicle’s status is
changed to searching for a predefined amount of time.

C. Vehicle Battery

The electric vehicles’ batteries are modeled as physical enti-
ties. Within the scope of this work, OpenModelica models are
used for the simulation of the charging and discharging of bat-
teries [33]. For that purpose the professional Electric Energy
Storage (EES) library [34] was employed, which implements
components for describing the dynamic behavior of batteries.
The utilized battery model is composed of n; serially connected
cells with an ohmic impedance I? and capacity C'. Depending
on the model complexity, self discharge, the internal linear dy-
namic impedance and aging (state of health) are considered.
Given the consumed power P(%) of the battery, the model de-
scribes the discharge rate (J (or charge rate if @ > 0) and the
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state of charge SOC. Using a look-up table of well-known ma-
terial dependent measurements (e.g., lithium ion polymer), the
open circuit voltage OCV and the total voltage V (¢) are com-
puted.

D. Battery Charger

The battery charger is implemented in GridLAB-D and
works according to an SOC-dependent charging strategy. It
reduces the charging power linearly towards zero when the
SOC is above a certain threshold to completely charge the bat-
tery, coarsely mimicking a CCCV (constant current, constant
voltage) charging behavior. Hence, the actual SOC directly
influences the charging time and charging power needed.

E. Charging Point Infrastructure

The electric vehicles are able to connect their batteries to
charging points. The power output used for charging can be
adjusted by the battery itself (SOC-dependant charging pro-
file) or the charging management system (flexible-demand man-
agement). Typically, several charging points are combined to
a charging point group, which is directly connected (as an in-
dependent node) to the common electric distribution grid. In
the current implementation the charging point groups are very
generic and hold for instance no geographical information.

F. Electric Distribution Grid

A simple medium voltage network with three medium/low
voltage transformers has been modelled. Typical cable specifi-
cations and line lengths between 3 to 10 km have been used for
the medium voltage grid. Each of the three low voltage networks
consists of one household load, a load representing the charging
point and a photovoltaic system (PV). Cable lengths of 50 to
150 m and rather small cross-sections have been used to ease
the investigation of the voltage line drop caused by charging
and household loads.

For investigating the dynamics of demand response algo-
rithms like the charging control of EV, it is important to have
a realistic simulation setup. Especially the dynamics of the
loads influence the controller performance. For investigating
the impact of single phase charging (and PV generation) it is
necessary to have a 3-phase/4-line model for unbalanced power
flow. Synthetic profiles would be insufficient, since the power
consumption on the household level is stochastic.

The charging points are modeled as 3-phase loads connected
to a bus, with the load representing the demand of a house-
hold. The actual active (and reactive) power can be set from the
co-simulation environment and represents the charging power
of the battery.

Load profiles are taken from a detailed measurement cam-
paign that monitored the active and reactive power for every
phase and every second of almost every single device and the
total household for a period of 2 weeks in summer and winter.
About 30 profiles have been measured and the data has been av-
eraged for various periods, like 1, 5 and 15 minutes in addition
to the one second root-mean-square profiles [35].

Distributed generation, like from the PV system, is modeled
also as a 3-phase negative load, and is represented by mea-
surement profiles. Alternatively, it could also be modeled using
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Fig. 4. Example of extracted car rental data. The data shows the duration
Atnrentea between two rentals, in dependence on the time of day #,nrented at
which the vehicle had been returned by the customer.

an dynamic interacting weather-dependent model in OpenMod-
elica.

G. Charging Management

The charging management system implements the EV
charging algorithm. It has access to the state of the electric
distribution grid, i.e., voltage levels at the charging points, and
can take actions in case of overloads or voltages above or below
allowed limits, i.e., regulate the active power consumption of
the charging points.

An algorithm controlling the set points of the charging points,
i.e., the maximum allowed power output of each individual
charging point, has been implemented as a proof of concept for
a charging management. The algorithm reduces the set point of
a charging point by the step AP in case of under voltage and
increases it stepwise if the voltage limits are not violated

P (f ) _ min (Pi,sct (tk) + AP~ Pi,max) Ui > l]max
Eset\TR L) T max (P set(tr) — AP,0) U; < Unax
Vt7VL : 0 S Pi,chargo(t) S Pi,scr(t)

The next cycle time {1 of the controller is issued to the simu-
lation control to announce an update of the simulation. During
periods of increased model dynamics the increment in time can
be reduced to enhance the accuracy of the simulation.

This algorithm could be implemented as a distributed con-
troller, operating locally hosted in the charging point, or cen-
trally and communicating the necessary measurement and con-
trol signals with the battery charger.

However, more sophisticated approaches, including for in-
stance also reactive power control, consumer participation or
congestion costs, could be very well implemented and investi-
gated in this simulation framework. The algorithm can be im-
plemented in GridLAB-D or outside and connected to the sim-
ulation environment via the standardized FMI interface.

V. VEHICLE DRIVING BEHAVIOR

For the sake of reflecting a realistic driving behavior, the im-
plementation of the vehicle schedule was based on information
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Fig. 5. Resulting distribution depicting the simulated user behavior. Shown is
the time Atqonnecs for which electric vehicles are connected to a charging point,
in dependence on the time of day t.onnect at which the vehicle had arrived and
connected to the charging point.

extracted from the data of 6 locations for the year 2011 of a com-
mercial car rental provider, including approximately 7700 rides.
Even though this data includes itself no information about elec-
tric vehicle usage (all the vehicles have ordinary combustion en-
gines), it allows to extract the characteristic user behavior, e.g.,
distributions of departure times, trip durations or vehicle types.
Fig. 4 shows one of the extracted data sets that has then been
used for the simulations.

This data allows to construct a realistic driving behavior
model for a fleet of electric vehicles. For this, it is assumed that
the theoretical time available for charging an electric vehicle
corresponds to the periods in which the real-world vehicles
were not rented. This is consistent with scenarios with a low
penetration of charging points, but where users depend on
dedicated infrastructure (similar to gas stations). For alternative
scenarios, the driving patterns of the electric vehicles can be
changed by using different distributions of departure times, trip
durations, etc., based on other appropriate traffic patterns (e.g.,
of commuters).

In contrast to using the exact travelling data directly as static
input, this stochastic approach is highly scalable, both with re-
spect to the number of cars as well as the length of the simulated
time interval.

VI. RESULTS

A. User Behavior

Fig. 5 shows for a typical simulation run the histogram of the
time a vehicle stays connected to a charging point Afconnect
in dependence on the time-of-day the vehicle was connected
teonnect- This distribution is the outcome of the dynamic
scheduling of charging periods and journeys, as described in
Section IV-B. When the simulated driving behavior based on
the statistical distributions is compared with the corresponding
real car-rental data of recorded journeys in Fig. 4, one can
see that this simplified approach reproduces the characteristics
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TABLE I
BATTERY SPECIFICATIONS

single cell capacity 1500 As
number of cells per battery 100

energy demand when driving 20 kWh/100 km
maximum charging power 11 kW

T T
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Fig. 6. Example simulation of a battery’s SOC over a period of several days.

of a real-world scenario very well. Other characteristics, like
duration of trips or driven distances, are also well reproduced.

B. Battery Operation

Table I gives an overview of the specifications relevant for
the simulation of battery operation. Fig. 6 shows a typical evo-
lution of a battery’s SOC. Several periods of discharging due to
traveling can be seen, each according to a dynamically sched-
uled trip. Also the effect of the SOC depending battery charger
is visible.

As a result of the discrete event simulation, the length of the
time step between two subsequent simulation steps depends on
the actual events taking place. Fig. 7 demonstrates the non-uni-
form sequence of simulation steps due to the need for con-
trol caused by voltage violations. Obviously, the level of detail
and accuracy of our dynamic interacting approach is superior
to static simulations. Compared to approaches using fixed time
steps this method is overall also superior with respect to perfor-
mance.

C. Flexible-Demand Management

Fig. 8 shows the dynamic response of a controller to a
voltage drop caused by recharging a battery. The controller is
reducing the voltage drop by decreasing the allowed charging
power, see Fig. 9. This happens every control cycle until the
allowed voltage limits are not violated any more. By starting
every charging cycle with the maximum allowed power con-
sumption, this algorithm would create a transient under voltage,
which avoided the need for a smarter charging algorithm (e.g.,
including a ramp-up of the charging power). Sudden load steps
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Fig. 8. Voltages during charging process with charging management (11 kW).
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visible in Fig. 8 during charging are due to the dynamics of the
simulated households.
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VII. CONCLUSIONS AND OUTLOOK

This work presents a prototype simulation platform for
testing flexible-demand management concepts in the context
of electric vehicle charging. To enable the precise investigation
of dynamic phenomena its design comprises a general-pur-
pose discrete event-based simulator at the core that keeps
track of a model’s dynamic evolution. This is enhanced with
domain-specific modeling tools to simulate the state of con-
tinuous time-based components. Due to the deployment of
an object-oriented abstract EV model this approach is highly
extensible, facilitating the adaptation to the demands of any
given application.

The prototype implementation was realized by adapting
GridLAB-D as the core, and coupling it with PowerFactory and
OpenModelica. It demonstrates the applicability of the con-
cept for testing flexible-demand charging algorithms and the
possibilities given by tool coupling. Compared to conventional
static approaches, this facilitates dynamic simulations that shift
the level of detail from coarse net balances to elaborate studies
of sub-system behavior, like controller stability or oscillations
with other charging points.

The implemented prototype of the simulation platform is ca-
pable of emulating authentic user behavior based on real-world
car-rental data, uses a realistic battery model provided by a pro-
fessional modeling library and performs reliable electric distri-
bution grid calculations with a validated simulation tool. Due to
its modular design it allows to include more complex sub-com-
ponents in a convenient way. For instance, vehicle schedules
including geographical, meteorological and traffic data or V2G
management algorithms can be integrated.
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