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Simulating Cyber-Physical Energy Systems:
Challenges, Tools and Methods
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Abstract—The energy system of the future is expected to
be composed of a large variety of technologies and applica-
tions. However, the diverse nature of these components, their
interlinked topology, and the sheer size of the system lead to
an unprecedented level of complexity. Industry is confronted
with severe problems in designing interoperable grid compo-
nents, analyzing system stability, and improving efficiency. This
paper describes the main challenges of continuous time-based
and discrete event-based models of such cyber-physical energy
systems. Using a characteristic test model, the scalability of
the two approaches is analyzed. The results show the strengths
and weaknesses of these two fundamentally different modeling
principles that need to be considered when working with large
scale cyber-physical energy systems.

Index Terms—Cyber-physical energy systems, hybrid systems,
modeling, simulation, software tools.

I. Introduction

ENERGY systems are experiencing a gradual but sub-
stantial change. Electric mobility and a transition to

renewable energy sources are very much welcomed but they
also increase the complexity of the systems. Both the com-
ponents and the systems industry face new challenges in
developing new technologies because established methods and
tools cannot deal with the nature of future smart grids. That
is, traditional, unidirectional, and hierarchical topologies are
becoming more distributed and flat. The enabling technologies
are power electronics and information technology (IT), leading
to cyber-physical energy systems. A short survey of these
topics is provided in [1]. IT adds another unprecedented level
of complexity: decentralized control, agents in the grid and
on markets, smart buildings, and autonomous software make
every physical system generally more complex, due to the
rapidly increasing number of systems states.

To describe the energy system of the future, the follow-
ing four categories of phenomena and/or domains must be
considered.

1) Physical World/Continuous Models: Energy generation,
transport, distribution, consumption, infrastructure, and
their components.
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2) Information Technology/Discrete Models: Controllers,
communication infrastructure, and software.

3) Roles and Individual Behavior/Game Theory Models:
Agents acting on behalf of a customer, market players.

4) Aggregated and Stochastic Elements/Statistical Models:
Weather, macroview on consumers, generalized charac-
teristics of many individual elements.

Just combining the first two categories in one model results
in variable structure dynamic models [2] that are complex
to analyze and implement. Consideration of the latter two
categories results in large stochastic hybrid models. Such
models characterize complex continuous controlled systems
for instance. They also contain self-deciding agents of discrete
behavior, in a fully random environment, with a large number
of states [3]. These states typically correspond to a large
number of operational and failure modes that are difficult
to estimate with traditional approaches [4]. This introduces
further challenges for model-based monitoring and diagnoses.
The correct integration of model-based diagnostic techniques,
together with data acquisition and modeling of faults, is
therefore a key requirement to enable diagnostic reasoning [5].
Another challenge arises due to the size of energy systems. It
is the scalability of the models that is particularly important,
when tens of thousands of components interact.

Unfortunately, there is a lack of methods and tools. While
highly specialized and useful tools for the various details
and individual domains of energy systems exist, there is
no method or tool that combines all of the above aspects.
[6] presents promising activities in modeling cyber-physical
energy systems but provides no answers to the question
of how to seamlessly integrate discrete controls and roles.
This paper investigates the possibilities and limits of popular
tools with respect to the modeling and simulation of hybrid
(i.e., continuous and discrete) energy systems.

II. Fundamental Challenges in Simulating

Complex Energy Systems

Examples for energy systems with grid-friendly, agent-
controlled buildings are presented in [7]. They constitute the
future of our energy system with the potential to be more
efficient and include more renewable energy sources. These
energy systems not only contain technical infrastructure, but
also smart software agents, markets, and other components,
which inevitably require the employment of hybrid modeling
approaches.
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From an abstract point of view, such hybrid systems can be
regarded as an ensemble of concurrent finite state machines
coupled via an interactive environment [8], [9]. These states
are not necessarily static as in the case of the different
modes of a controller. Especially for components representing
physical objects, the individual states correspond to different
continuous-time models, representing their dynamics accord-
ing to their external and internal conditions. For a residential
building the states could, for instance, correspond to the
combinations of all the possible on/off-states of the HVAC
sub-systems, each described by an adequate thermodynamic
model. The transition between two states corresponds with
a component’s reaction to the alteration of the external
(e.g., environmental impacts) and internal (e.g., decision by
local controller or agent) conditions. Any alteration of the
conditions can therefore be triggered either deterministically
or stochastically.

The treatment of such hybrid systems poses various
challenges.

1) System Topology: The exact and proper representation
of a system’s topology within a simulation environment is
critical, especially for the treatment of complex problems.
Due to the typical structure of energy systems that com-
prise a multitude of individual components, an object-oriented
representation of the topology is preferable. In many cases
a hierarchical representation is also a convenient method to
characterize the dependencies between components.

2) Data Flow and Concurrency: Within a simulation
environment the individual components have to be able to
provide information concerning their internal state. This is
not only the basis for information exchange between compo-
nents but is also essential for data logging and monitoring.
In addition, a simulation environment has to also provide
the means to handle the data flow between all concurrent
components such that a well-defined incremental evolution of
the simulation is possible, ensuring, for example, causality and
consistency. Ideally the corresponding interfaces should follow
strong interoperability rules in order to enable model exchange
and unit testing.

3) Plurality of Event Types and Massive Event Occurrence:
Models of energy systems comprise of a variety of different
types of events that trigger state transitions of individual
objects. A simulation environment needs to be able to resolve
a potentially large number of events within a short time span.
Depending on the simulation’s level of granularity the applied
method has to achieve appropriate accuracy.

4) Variable Structure Dynamics: Cyber-physical systems
tend to enable, disable, or otherwise alter individual parts,
which leads to variable structural dynamics. Consequently, the
simulation environment has to be able to identify such events
and perform the corresponding actions.

5) Modeling Language: A modeling language has to be
able to represent all the issues above in a well-established and
organized way. For convenience it should also include fea-
tures that simplify the tasks of model generation, component
initialization, incremental model development, and capabili-
ties for code reuse. For the sake of easy interpretation and
extensibility, object-oriented approaches are again preferred.

Finally, readability (both human and machine) is an important
aspect.

6) System Scalability: Simulations of energy system mod-
els are potentially comprised of a large number of components,
which have to be handled by an adequate simulation tool
within a reasonable runtime, using an appropriate level of
resources (e.g., number of cores, shared memory). This re-
quires the employment of efficient algorithms as well as high-
performance computing solutions. Even if the targeted systems
are relatively small (e.g., micro-grids, unless fully islanding),
their interplay with neighboring systems is of special interest,
which again leads to scalability challenges.

III. State of the Art

A large variety of simulation tools for the individual
components of energy systems are available today. This is
especially true for electric power grids, where the development
of tools for the simulation of generation, transmission, and
distribution has been driven by the engineering requirements of
providers and the industry. Proprietary simulators include NE-
PLAN [10], PSS Product Suite tools [11], PowerFactory [12],
PowerWorld Simulator [13], PSCAD [14], or eMEGAsim
(focused on HIL simulation) [15]. Free open-source implemen-
tations include OpenDSS [16], InterPSS [17], and Homer [18].
Also a variety of MATLAB tools exists, including the propri-
etary SimPowerSystems [19] as well as the free open-source
toolboxes PSAT [20], VST [21], and MATPOWER [22].
There is an effort to promote the common information model
(CIM) [23]—and derived models, such as the common distri-
bution power system model (CDPSM) [24]—as a standard for
the description of electric networks.

Similar to the situation in power engineering, is the ever-
growing need for the development and extension of IT net-
works leading to a number of simulation tools. Proprietary
network simulators include OPNET Modeler [25] and Net-
Sim [26]. Free open-source implementations include ns-3 [27]
and OMNeT++ [28].

For modeling energy consumption in buildings, a number
of commercial and free tools are available. [29] gives an
extensive overview of the capabilities and differences these
tools possess. However, the authors mainly focus on Energy-
Plus and TRNSYS, probably the two most popular and well-
established tools with large validated component libraries. The
capabilities of these two packages to be integrated in complex
control simulation is, unfortunately, limited. [30] explicitly
classifies buildings under cyber-physical energy systems but
deals only with static models, while this paper focuses on
dynamic systems.

Apart from specialized tools, a variety of universal multido-
main modeling and simulation solutions exist. Several of these
projects are based on Modelica [31], [32], an object-oriented
simulation language that offers an extensive (and extensible)
set of standard libraries for flexible physical modelling. Com-
mercial vendors of Modelica-based simulation tools include
Dymola [33], MathModelica [34], or MapleSim [35]. Open-
source Modelica-based environments are provided by Open-
Modelica [36], and JModelica [37]. A conceptually similar
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approach has been realized with the proprietary package
Simscape [19], which includes a rich set of extendable libraries
for standard engineering problems.

A very generic tool for heterogeneous, concurrent modeling
and design is the open-source framework Ptolemy II [38] that
allows the combination of—among others—discrete and con-
tinuous models. Due to its abstract and general implementation
it has been used as the basis for several other projects, such
as the hybrid system simulator HyVisual [9] or the building
controls co-simulation tool BCVTB [39].

Generic open-source co-simulation frameworks with a focus
on energy systems are Simantics [40] and Mosaik [41]. They
both provide extensive functionalities for formal model de-
scription and couplings to other simulation engines. Examples
for co-simulations platforms with specific application-tailored
functionalities are given in [42] (power systems and IT)
and [43] (power systems and electric mobility).

An open-source project specifically dedicated to the sim-
ulation and analysis of energy systems is GridLAB-D [44].
It provides framework and toolboxes for simulating various
aspects of energy systems. This software includes its own set
of tools for power flow and reliability analyses of electric
systems, along with simulation of residential, commercial,
and industrial buildings and the implementation of custom
controllers and energy market simulation.

IV. Comparison of Two Fundamentally Different

Simulation Approaches

In this paper, two completely complementary simulation
approaches are applied to the same problem. They correspond
to two fundamentally different approaches of modeling hybrid
systems. The first approach is discrete event-based, focusing
on the successive handling of autonomous and concurrent ob-
jects. The second approach is continuous time-based, starting
from the complete set of algebraic differential equations that
define the individual objects.

The goal of this comparison is to highlight and contrast
the advantages and disadvantages of these two approaches.
This will give the possibility to make proposals for future
developments.

A. Description of Test Model

An easily scalable test model is introduced, which allows
an assessment of the two approaches’ capabilities with respect
to resolving component dependencies, event handling, data
flow between objects, and scalability. Communication between
objects is considered ideal, i.e., lossless and without delay,
such that ICT-related issues are not taken into account. The
functionality of the individual components is kept simple on
purpose, in order to focus on the study of the concurrent
evolution and interplay of the constituent parts. Even though
the model topology is also kept rather simple, it already
comprises features that are characteristic for energy systems,
such as deterministic and stochastic events, feedback loops,
and hybrid elements.

The topology of the test model is shown in Figs. 1 and 2.
The image syntax is oriented toward hybrid bond graphs. The

Fig. 1. Top level view of test model.

Fig. 2. Detailed view of building.

unfortunate lack of certain features (e.g., heat flow) in existing
proposals, such as in [45] and [46] has lead to the new syntax
use within this paper.

1) Buildings: The buildings are modeled as thermal capac-
itors (inside volume) linked to a thermal reservoir (ambient
environment) via a thermal resistor (walls). The capacitor’s
temperature is monitored by a two-level controller (thermostat
with hysteresis between Tmin and Tmax), which can feed a
constant heat flow (heating).

a) Thermal energy stored in thermal capacitor

Qstore = ρ VCthTin. (1)

b) Heat flow through thermal resistor

Q̇loss =
1

Rth
(Tin − Tamb) . (2)

c) Heat flow regulated by two-level controller

Q̇heat =

{
0, if heating is off

Pheat, if heating is on.
(3)

d) Heat flow balance

Q̇store = −Q̇loss + Q̇heat. (4)
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Tin and Tamb is the inside and outside temperature, ρ and V

the density and the cubic content of the inside volume, Cth

is the thermal capacity of the inside volume and Rth is the
thermal resistance of the walls.

2) Stochastic Events: At random times the buildings are
ventilated (windows open/closed), effectively modeled by a
change of the thermal resistance1

1

Rth
=

{
λ φV

d
, if windows are closed

λ φV

d
+, Gvent, if windows are open.

(5)

The walls’ thickness and thermal conductivity are given by
d and λ, φ is the ratio of the outside walls’ area to the
inside volume’s cubic content (form factor), and Gvent is the
additional heat conductance value representing ventilation.

Two different time constants, τopen and τclose, are used to
specify the average waiting time for a window to be opened
and then closed again, respectively. To model independent
random events, the waiting times are drawn from exponential
distributions, according to the corresponding time constants.

3) Market: The price per kilowatthour consumed is de-
pendent on the average energy consumption per building. The
latter is determined by reading all energy meters at regular
intervals (�tmeter), calculating the mean energy consumption
of all buildings, and then taking the average over the last n

intervals. The price p is calculated via

p = p0 + 〈Ēcon〉n × p1. (6)

Econ is the energy consumed per building between two meter
readings, Ēcon is the mean value of Econ of all buildings, and
〈.〉n denotes the average over n periods. The terms p0 and p1

are constants.
4) Agents: The upper goal temperature Tmax of a building’s

thermostat is controlled by an agent. In case the energy price
exceeds a certain level pmax, the upper goal temperature is
reduced (Tmax → Talt).

5) Weather: The temperature of the buildings’ ambient
environment is subject to change, modeled by a sinusoidal
pattern

Tamb = T̄amb + �Tamb sin (ωt + ϕ) . (7)

The parameters ω and φ are chosen such that the minimum
temperature occurs every day at midnight.

B. Discrete Event-Based Micro-Simulation With GridLAB-D

1) Background: This discrete event-based micro-
simulation approach provides the means to handle the
interplay of autonomous, concurrent objects. Such systems,
even if composed of simple objects, can exhibit complexity
and emergence.

For the purpose of this paper, the open-source tool
GridLAB-D has been used. Its key features are as follows.

1The authors are well aware of convection and that opening a window does
not change conduction. The purpose of this test model at the current state
is, however, to show variable structure dynamics and not physical accuracy.
Opening the window is therefore simply mapped onto a changed thermal
conductance.

Fig. 3. Schematic view of synchronization procedure of building object in
GridLAB-D.

a) GridLAB-D aims primarily at the analysis of power
distribution systems. It provides a number of plug-
in modules for the simulation of energy generation,
distribution, and consumption as well as related topics
such as controls, network communication, or markets.
Custom plug-in modules can be implemented in C/C++.

b) GridLAB-D uses its own modeling language called
GLM (GridLAB-D modeling language), which provides
a parametric syntax for the creation of hierarchical
models. It also offers tools for object initialization and
data analysis.

c) GridLAB-D allows the definition of hierarchies between
all objects, which are introduced via parent–child rela-
tionships. This ranking determines the scheduling of the
objects, i.e., the order of execution at every simulation
time step. If necessary, the relative ranking between
objects can be altered on purpose.

d) Each object is by itself responsible to update its in-
ternal state according to the global simulation time.
GridLAB-D’s simulation core watches for changes in the
states of these objects during runtime (discrete events)
and enables synchronized interactions between them.
Each object has to notify the simulation core when
its internal state is supposedly going to change, under
the assumption that all other objects remain in their
current state. This implies that all objects have to be
synchronized every time an event occurs.

2) Implementation: A custom plug-in module has been
developed in C++, which includes implementations of all the
components of the test model as GridLAB-D objects. Fig. 3
shows as an example the schematic view of the synchroniza-
tion function of the object that represents a building’s con-
troller, heater, thermal mass, and conductance. This function
updates the internal state of the object according to the current
simulation time, then checks whether the heater has to be
switched on/off, and finally calculates (and returns) when the
heater will be switched on/off the next time. This function gets
called directly by GridLAB-D’s simulation core.
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Fig. 4. Schematic view of rollback mechanism for single building object for
fixed step schedule. Evolution in time of building’s state is indicated by blue
lines.

The test model has been simulated using two different
scheduling mechanisms. The dynamic schedule uses the fact
that the test model can be solved analytically for individual
buildings such that the time for the next state transition,
i.e., a change of the internal state, can be computed exactly
in advance. This allows precise synchronization of all objects
whenever the global state of the system changes. In the fixed
step schedule, synchronizations occur with a fixed frequency.
To avoid inaccuracies, the time step size has to be chosen such
that it is small in comparison to the typical time span between
two state transitions of an individual object.

In the dynamic scheme random events are handled explic-
itly. Since they cause state transitions of individual objects,
they also trigger a synchronization of all components. For the
fixed step schedule, events have been taken into account via
a rollback mechanism. During a simulation step whenever an
event is overdue for any given object, its effects are computed
retrospectively.

Fig. 4 sketches the process of the rollback mechanism for
a building object. After a completed simulation step at time
t0, the global simulation time progresses to t1 (step I). If, for
example, the temperature would exceed the upper controller
threshold after this step, the object’s state is not immediately
updated. Instead the time te < t1 of the event is computed
accordingly (step II), and the evolution of the previous state
is only carried out up to this time (step III). After this the
internal state transition of the building object takes place (in
this case the heater is turned off) and the evolution of the new
state up to the time t1 is computed (step IV). Random events
are treated in an analogous manner. In this way the effects of
events on individual objects are treated precisely, even though
a possible impact on other components is delayed (until t1).

3) Results: Fig. 5 shows the temperature profiles for a
scenario with 1000 buildings using the dynamic schedule. The
blue, green, and red lines show the minimum, average, and
maximum temperature of all the buildings, while the grey band
visualizes the observed deviation from the average value (root
of sample variance). Fig. 6 shows the number of active heaters
as a function of time for the case of the dynamic and the fixed
step schedule (with an update interval of 60 s). The comparison
shows that both scheduling schemes yield virtually the same
result for this simple model.

Fig. 5. Temperature profile for 1000 buildings simulated using dynamic
schedule.

Fig. 6. Comparison of thermostat status profiles for different synchronization
schedules.

Fig. 7. Overview of elapsed computing times in GridLAB-D.

For the dynamic schedule, the number of synchronization
steps per time unit is proportional to the number of buildings
N and at each synchronization step all buildings are updated.
This is also the case with the fixed step schedule, but the
number of synchronization steps per time unit is constant.
Hence, the execution time scales with N in case of the fixed
step schedule, and with N2 in case of the dynamic schedule.
Fig. 7 shows how the elapsed simulation time depends on the
number of included buildings and the scheduling scheme. The
blue line represents a linear fit (t ∼ N) to the execution time
measurements for the fixed step schedule. The dashed red line
represents a quadratic fit (t ∼ N2) to the first four execution
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time measurements for the dynamic schedule. The linear trend
for larger numbers of buildings arises from a saturation effect,
where the average time between two synchronization steps
becomes smaller than the minimum increment in simulation
time (one second).

C. Continuous Time-Based Modeling With Modelica

1) Background: Modelica is a modern object-oriented
modeling language for DAE-based physical models with an
ever increasing attention from the scientific and engineer-
ing community. It adopts the non-causal modeling approach,
which in contrast to the block-diagram approach (e.g., used in
Simulink) does not enforce the specification of causal input–
output relations among components and variables [47].

Equation-based object-oriented modeling relies on the fact
that even the most complex physical systems can be concep-
tually decomposed into structured hierarchies of elementary
components [48]. Each of these individual components is in-
dependently described by basic laws of physics in an intuitive
equation-based manner. These components are amended with
interfaces that facilitate a well-defined communication with
the external world (i.e., other components). Once the imple-
mentation of the individual components and their interfaces is
provided, the considered model can be constructed easily.

In Modelica so-called connectors are used to establish
interactions between components. A connector typically in-
cludes two types of variables, potential variable(s) (e.g., elec-
trical potential) and flow variable(s) (e.g., electrical current).
Only connectors with identical declarations can be connected
(Fig. 8). In this case, connection points assemble two kinds
of equations: trivial identity equations for potential variables
and sum-to-zero equations for flow variables.

Advantages of employing Modelica are as follows.

1) Universal modeling concepts simplify multidisciplinary
modeling, an aspect that is obviously present in energy
systems (Sections I and II).

2) The Modelica language encourages the implementation
of reusable, independent, and extensible components for
supporting fast prototyping of physical models.

3) Modelica is complemented with a set of standardized
libraries in many physical domains (e.g., thermody-
namics, electrical engineering). Furthermore specialized
libraries for simplifying the formulation of complex
hybrid systems exist (e.g., state graphs [49], state chart
[50], Petri nets [51], [52], and others).

4) Modelica simulation environments usually include ad-
vanced compilers that symbolically manipulate typically
large DAE systems of higher indexes. They gener-
ate efficient real-time simulation code with the help
of sophisticated algorithms, using advanced integrators
(Fig. 9). This allows the focus to remain on modeling
rather than paying attention to details of algorithmic
implementation.

5) Since Modelica environments typically include a graph-
ical user interface, the modeling of complex systems
becomes a matter of dragging, dropping, and connecting
components.

Fig. 8. Connectors provide means for components to communicate.

Fig. 9. Typical workflow for Modelica simulation.

2) Implementation: The test model has been implemented
as a stand-alone Modelica library, that is divided into three
packages, in order to facilitate a clear conceptual design.

1) The package “Interfaces” provides the connectors that
can be utilized for building up complex models. I/O
connectors involve only one potential variable and work
in a similar way.

2) The package “Component” provides the basic compo-
nents for the test model.

3) The package “Types” provides the type definitions of
the utilized physical and I/O signals. The associated
units are usually employed for performing unit checking
when it comes to compilation. At simulation runtime,
boundary checking can be performed.

The flexibility of the Modelica language allows for different
implementation flavors enabling various perspectives of the
model structure to be considered [53]. For instance, parame-
terizing the component type for the energy price calculation
makes it possible to easily adopt different energy price models.
Such an approach is particularly useful for supporting rapid
prototyping on the basis of top-down modeling, when less de-
tailed elementary components are replaced with more detailed
ones.

Furthermore, many useful features and advanced constructs
for model abstractions, model templates, inheritance, arrays,
variable structure systems, and event handling are employed
within the overall language specification.

3) Results: For demonstrating accuracy and performance
benchmarks, the Modelica simulation environment Dymola
(release version 7.4) has been employed. Dymola provides
several types of integrators capable of handling DAE systems
with events.

Analogous to the results from GridLAB-D, Fig. 10 shows
the average temperature profile of 1000 buildings simulated
using the variable step size integrator LSODAR with a relative
tolerance of 10−6. Fig. 11 shows the performance of a selection
of some of the available methods with different settings. While
the fixed-step integrators with relatively large-step sizes need
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Fig. 10. Temperature profile for 1000 buildings simulated using variable step
size LSODAR integrator with relative tolerance 10−6.

Fig. 11. Overview of elapsed computing times in Dymola.

Fig. 12. Comparison of contentious average temperature profile for different
integrators.

much less computing time than the variable-step integrators,
the accuracy of the results needs to be examined. For instance,
Fig. 12 shows a comparison of different methods with strict
settings (relative tolerance of 10−6 for dynamic integrators and
a step size of 1 for fixed-step integrators). The comparison
reveals that the choice of method is relatively insignificant
and for this type of model, the fixed-step methods can be
employed without facing stability or accuracy problems. While
the enlargement of step-sizes leads to improved runtime per-
formance, it comes with the price of less accurate results. The

selection of the optimum integrator with the correct settings
depends largely on whether performance or accuracy is the
top priority.

V. Discussion of results

Both approaches offer their own solutions to (most of)
the requirements regarding the simulation of hybrid systems
presented in Section II. Even though both approaches yield
comparable simulation results, there are basic differences in
performance, usability and flexibility.

For the considered test model, the discrete event-based
approach performs better with respect to runtime performance
and memory usage. With an increasing number of components
the equation-based method produces very large executables
and shows inferior scaling capabilities. The benefits of Dy-
mola’s advanced equation solving and integration algorithms
were outweighed by the loss of runtime performance caused
by the large number of events and state transitions, for which
the discrete event-based approach is clearly more suitable.

On the other hand, the equation-based approach is very well
suited to scenarios containing more sophisticated and complex
physical models. This is especially true in cases where no
analytical solutions exist or where the underlying system is of
higher index. In this situation the usage of an equation-based
approach becomes more suitable, since GridLAB-D itself
offers no generic tools for physical modeling in general.

Overall, the implementation details and the results demon-
strate that a discrete event-based modeling approach can
be used conveniently and flexibly for coupling discrete and
continuous systems with hybrid systems. Equation-based mod-
eling approaches on the other hand offer very effective and
intuitive ways to model and solve even complex continuous
time-based systems described by several stages of conceptual
hierarchies. Obviously, it would be desirable if a simulation
environment could combine both aspects, while still retaining
their benefits.

VI. Conclusion

Two very different ways of modeling and simulating com-
plex energy systems were presented. The investigated test
model was simple but contained the main ingredients: physical
elements, discrete elements, asynchronous events, and variable
structure dynamics. Moving toward reality, the system was
extended one step at a time with more complex parts, like full-
physical electric and thermal grids, dynamic energy markets,
or individual user behavior.

The consequences of each extension step was analyzed with
respect to scalability and numeric performance. In addition
to the two simulation environments described above, other
tools were added to the benchmark, most notably Mathworks’
Simscape and Ptolemy II based cosimulation.

The work with the given two tools also showed that it
will make sense to combine these two worlds. The advan-
tages were complementary and a joint setup benefitted from
transparent and accessible physical models and flexible event
processing.



PALENSKY et al.: SIMULATING CYBER-PHYSICAL ENERGY SYSTEMS 325

It was, therefore, the goal to set up a usable high-
performance environment to investigate complex energy sys-
tems with application scenarios that served as test cases. These
were smart grid functions, e.g., demand response, multiagent
energy balance communities, or energy storage management,
along with long term scenarios, e.g., the impact of renewable
energies and other new technologies.
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