
  

Abstract—Synthetic networks aim at generating realistic projections 

of real-world networks while concealing the actual system information. 

This paper proposes a scalable and effective approach based on graph 

neural networks (GNN) to generate synthetic topologies of Cyber-

Physical power Systems (CPS) with realistic network feature distribution. 

In order to comprehensively capture the characteristics of real CPS 

networks, we propose a generative model, namely Graph-CPS, based on 

graph variational autoencoder and graph recurrent neural networks. The 

method hides the sensitive topological information while maintaining the 

similar feature distribution of the real networks. We used multiple power 

and communication networks to prove and assess the effectiveness of the 

proposed method with experimental results. 

Index Terms— Cyber-Physical Systems, Graph Neural Networks, 

Synthetic Networks.  

I. INTRODUCTION 

ITH the increasing digitalization of modern power grids, the 

operation characteristics of the Cyber-Physical power 

System (CPS) have significantly changed. To accurately analyze 

the new system behavior, reliable models are needed for CPS 

research. The models should have consistent network 

characteristics with the real CPS to ensure the accuracy of 

simulation results. Meanwhile, the models should avoid revealing 

any sensitive system information that may be exploited by the 

adversaries, e.g., system topology, network features. To this end, 

synthetic networks, which can comprehensively mimic the 

characteristics of actual networks, became the answer to this 

concern. 
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                        (a)                                          (b)                        
Fig. 1 Illustration of networks with same topological parameter distribution but 

with different network features. 

The current research of synthetic networks mainly focuses on 

the power grids, the corresponding research on cyber aspects are 

insufficient [1][2]. Besides, the common philosophy in the 

literature is to generate a statistically realistic network in terms of 

complex network parameters, e.g., degree distribution, average 

path length [1][2], etc. Such consideration, although it captures the 

system characteristics to a certain extent, neglects the inherent 

system attributes of the nodes and edges such as the bandwidth of 

communication links and capacity of transmission lines in the 

CPS. Taking Fig. 1 as an example, although the networks in (a) 

and (b) have the same topology, the edge attributes are different. 

Consequently, one can obtain different results if they run power or 

information flow models on two networks. 

 
 

Based on the discussion above, we propose a scalable 

generative model, namely Graph-CPS, to generate a synthetic CPS 

topology with realistic network feature distribution. This model is 

capable of learning different complex network parameters as well 

as capturing the distribution of different network features of the 

input networks. The experimental results in Section IV thoroughly 

prove the effectiveness and scalability of Graph-CPS. It can 

accurately capture the characteristics of input networks with not 

only different network types, but also different network sizes. To 

the best knowledge of the authors, our paper is a pioneer work of 

its kind in generating synthetic topologies for CPS. 

II. MODELING OF CYBER-PHYSICAL POWER SYSTEM 
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Fig. 2 Illustration of the “partially one-to-one” interdependency of CPS. 

As shown in Fig. 2, we model the cyber-physical power system 

as an interdependent network consisting of two layers, i.e., 

communication network ( )C CV ,E  and power system ( )P PV ,E ， 

where  ..., ,...cV=
C

V , m=
C

V ,  ..., ,...p pV=V , 
p n=V are the 

cyber/physical substation node sets of the two layers and  

 ..., ,...C cE=E , C h=E ,  ..., ,...p pE=E , 
p k=E  are the 

communication/transmission edge sets of  and . 

According to [1], the interdependencies of CPS can be divided 

into “one-to-one”, “one-to-multiple”, and “multiple-to-multiple” 

correspondences. In this paper, we follow the typical substation 

communication structure from [4]. That is, the Numerical 

Protection Relays (NPRs), Merging Units (MUs), and Process 

Units (PUs) communicate through a Local Area Network (LAN) 

within the substation. They access the control centers through 

Wide Area Networks (WANs) via the routing gateways in the 

substations and relay communication nodes. Therefore, the CPS 

interdependency is defined as “partially one-to-one” 

interdependency, i.e., each physical substation node is associated 

with a cyber substation node, i.e., routing gateway, while not all 

cyber nodes are connected with the physical substation nodes. 
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III. GRAPH-CPS: GENERATING SYNTHETIC CYBER-PHYSICAL 

POWER SYSTEMS  

For an input network  G = A, X,E , A  is the adjacent matrix of 

the network, ( ) , , 1,2,3,...t ix x t i= =X  is the node attribute set of all 

nodes, and  1,2,3,...je j= =E  is the edge attribute set of all edges. 

tx  is the type feature of node. In this paper, we consider three 

different node types in the power system, i.e., generator， load, 

and zero injection node, and 1,1,0tx = − , respectively. In the 

communication model, we consider all nodes are substation 

routers. ix  is the network feature of node i. Note that one can 

perform different types of node/edge features to serve different 

research goals. In this paper, we use capacity centrality to quantify 

the feature of the nodes in both the communication network and 

power system, as shown in (1). 
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i j

j

x e


= 
N

 (1) 

Where iN  is the neighbor edge set of node i, and je  is defined as 

the capacity of the edge, e.g., transmission line capacity in power 

system and bandwidth of communication links in cyber layer. To 

comprehensively capture the global network features, we covert 

the node attribute vector X  into a probability distribution 

( ) ( , )i tV x P x x x=  . When comparing the network feature 

distribution of the two different networks, we use the Kullback-

Leibler divergence to quantify the difference between the two 

different probability distributions as shown in (2). 

 ( ) ( ) ( )
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Fig. 3 Framework of Graph-CPS. 

As shown in Fig. 3, the Graph-CPS consists of three modules, 

i.e., Recurrent Neural Network (RNN), Variational Autoencoder 

(VAE), and Network Feature Reconstruction (NFR). The RNN 

and VAE modules generate the synthetic CPS topology and 

network features, separately. Then, the NFR module integrates the 

generated data and forms the new synthetic network. The RNN 

module sequentially and recurrently generates the synthetic 

network topology by cooperatively using two RNNs, i.e., node 

level RNN and edge level RNN. Both of the RNNs consist of state-

transition function and an output function as in (3)-(4). 

 
1 1( , )o trans o oh f h S

− −=  (3) 

 ( )o out of h =  (4) 

Where oh  encodes the generated graph of current time step, and 

1oS

−  is the adjacency vector for the 1o −  nodes of last time step. o  

indicates the distribution of binary adjacency vector for node o. 

transf  and outf  can be arbitrary neural networks. For more details of 

RNN modeling, readers are referred to [5]. As in Fig. 3, the output 

of RNN module is the synthetic topology Â . 

The encoder of VAE module takes A  and X  as inputs, and it 

uses a two-layer Graph Convolutional Network (GCN) to project 

the inputs into the latent space Z , which is expressed in (5). 

 
1

( ) ( )
N

rr
q q z =

= Z X, A X, A  (5) 

For the detailed definition of the two-layer GCN, readers are 

referred to [6]. The latent space Z  is regularized by a simplistic 

isotropic Gaussian prior ( ) (0, )p N I=Z . The decoder is also a two-

layer GCN which takes Z  and vaeA  as inputs. vaeA  is the result of 

the inner-product [6] sampling from Z . Then, the generated node 

attribute X̂  is calculated as shown in (6)-(7). 

 ( ) 1

ˆ ˆ ˆ( , )
N

vae i t vaei
p p x x

 =
= X A ,Z A ,Z  (6) 

 ( )2ˆ ˆ ˆ ˆ( , ) , ,diag( )i t vae i t i ip x x x x


=A ,Z μ σ  (7) 

Where GCN ( )vae=μ A ,Z  is the matrix of mean vectors iμ  and 

similarly log GCN ( )vae=σ A ,Z . The GCN in the decoder is defined 

as GCN( ) ReLU( )vae vae vae
 =

0 1
A ,Z A A XW W , where 0

W  and 1W  are the 

trained parameters. Re LU( ) = max(0, )  and vae vae
 = -1/ 2 -1/ 2

A D A D  is the 

symmetrically normalized adjacency matrix. D  is the degree 

matrix of vaeA . 

The goal of the proposed method is to generate synthetic 

networks with consistent network feature distribution to the input 

graph. Therefore, during the training process, we consider the 

equation (2) and minimize the variational upper bound  as 

shown in equation (8). 
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After the RNN and VAE modules, Â  and X̂  are obtained. In 

the NFR module, we use Algorithm 1 to map node attribute X̂  to 

Â  and reconstruct the edge attribute Ê . Note that when mapping 

X̂  to Â , we assume that the nodes with higher degree have higher 

node attribute. In Algorithm 1, CV / pV  is the node set for cyber 

layer and physical layer. 0

iN  is the neighbor edge set of node ˆ
ix  

whose ˆ 0je =  and ˆRe( )ix  is the remaining node attribute of ˆ
ix  that 

is not assigned to any edge yet. Initially, ˆ ˆRe( )i ix x= . 

Based on [5][6] and Fig. 3, one can derive that both GraphRNN 

and GraphVAE use an encoder to learn a distribution model ( )P G  

based on the input data, which is stored in the latent space. Then, 

the decoder will interpret model ( )P G  by sampling from the latent 

space and generate the output graphs, where the sampling is 

random but constrained by model ( )P G . Therefore, if one wants to 

back solve from the output and obtain the exact real input data, at 

least the following information is needed: (1) exact sampling 

probabilities used by our method to generate the synthetic 

network, (2) exact learned parameters of the encoder, and (3) 



 

 

 

 

learned distribution. Note that for condition (1), each generation is 

an independent event with different random probabilities and thus 

is inaccessible. Also, conditions (2) and (3) are unfeasible without 

condition (1). Although the adversaries may use brute force to 

back solve from the output data, it is still unfeasible to back solve 

the model because: (i) in CPS minor differences in network 

topology and node/edge attributes leads to different power flow 

results, and (ii) the adversaries do not know the real CPS. It means 

they have no reference and cannot control the difference between 

their back solving results and real CPS, which leads back to issue 

(i). Therefore, to the best knowledge of the authors, it is unlikely 

to back solve the generation process with only knowing the 

generated synthetic network. 

Algorithm 1: Network feature reconstruction module 

Input: Generated adjacent matrix Â  and node attributes X̂  

Output:  ˆ ˆ ˆ ˆG = A, X, E  

Step 1 ˆ E 0  

Step 2 Sort X̂  in descending order 

Step 3 Sort CV / pV  in degree descending order based on Â  

Step 4 Assign X̂  to CV / pV  

Step 5 Locate the node ˆ
ix with the smallest degree 

Step 6 For 0

ij N  do: 

Step 7       0ˆ ˆRe( ) /j i ie x N=  

Step 8       Update ˆRe( )ix  

Step 9 End for 

Step 10 Repeat Step 5-8 until all ˆ 0je   

Step 11 Return  ˆ ˆ ˆ ˆG = A, X, E  

IV. CASE STUDY 

In this Section, we implement the proposed Graph-CPS on three 

power systems and three power grid communication networks to 

demostrate and assess the model effectiveness and scalability. For 

physical layer, we used the IEEE 39-bus standard test system, 

Italian and German transmission systems (380kV- 400kV), the 

European continental power grids [7]. For cyber layer, we use the 

communication network for Jiangsu province power grids in 

China [8] and two validated communication networks for IEEE 

39-bus, 118-bus system, respectively [9][10]. The size of the 

networks mentioned above were scaled from 18 nodes to 1225 

nodes and the networks contain both IEEE standard test systems 

and the real systems. 

Table I provides the statistical comparison between real and 

synthetic CPS. From the topological perspective, we evaluate the 

quality of the generated synthetic network based on multiple 

complex network parameters, i.e., average node degree, average 

shortest path length, network diameter, network density, average 

and maximum node betweenness. These parameters reflect the 

global structural characteristics of a network. From the perspective 

of network features, we evaluate the generation quality by 

comparing the mean value and the variance of the normalized 

generated features. Based on Table I, one can observe that all 

generated parameters have small differences compared with the 

original networks. Therefore, it is proved that the Graph-CPS is 

scalable and accurate to preserve the characteristics of input 

networks with not only different network types, i.e., power and 

communication networks, but also different network sizes. 

  
                                    (a)                                                          (b) 

Fig. 4 (a) Generated synthetic power topology for IEEE 39-bus system, (b) 
Generated synthetic communication network. 
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Fig. 5 Generated synthetic CPS for IEEE 39-bus system. 

TABLE I STATISTICAL COMPARISON BETWEEN REAL AND SYNTHETIC CPS 

 
Synth. IEEE 39-

bus power syst.  

Synth. Italian 

power syst. 

Synth. German 

power syst. 

Synth. 

European 

power syst. 

Synth. IEEE 39-

bus comm. syst. 

Synth. Jiangsu 

comm. syst. 

Synth. 128 

nodes comm. 

syst. 

N  39 (0) 151 (0) 289 (0) 1226 (-1) 39 (0) 18 (0) 128 (0) 

L  46 (-1) 192 (+4) 345 (+10) 1598 (-11) 38 (0) 29 (0) 160 (+4) 

k  2.308 (+0.051) 2.543 (+0.053) 2.388 (+0.069) 2.602 (-0.016) 1.949 (-0.001) 3.222 (+0.001) 2.481 (+0.082) 

l  4.761 (-0.012) 9.731 (-0.205) 11.756 (-0.209) 23.396 (-0.186) 6.874 (0.125) 2.523 (-0.020) 6.654 (+0.097) 

d  11 (-1) 28 (-1) 30 (-2) 63 (-4) 16 (0) 5 (0) 16 (-2) 

D  0.062 (-0.02) 0.016 (+0.0004) 0.008 (+0.0003) 0.002 (0) 0.051 (0) 0.189 (0) 0.019 (+0.0004) 

bc  0.102 (-0.001) 0.058 (-0.001) 0.038 (-0.001) 0.018 (0) 0.159 (0.003) 0.095 (-0.002) 0.045 (+0.001) 

max bc  0.494 (-0.018) 0.318 (+0.073) 0.393 (-0.099) 0.236 (+0.061) 0.596 (0.043) 0.334 (-0.002) 0.541 (+0.063) 

ˆ
ix  0.287 (-0.048) 0.348 (-0.109) 0.387 (-0.119) 0.314 (-0.033) 0.436 (-0.018) 0.490 (-0.028) 0.516 (-0.094) 

( )ˆVar iX  0.036 (+0.008) 0.036 (+0.008) 0.038 (+0.007) 0.048 (-0.003) 0.074 (-0.003) 0.118 (-0.002) 0.061 (+0.009) 

N : number of nodes, L : number of edges, k : average node degree, l : average shortest path length, d : network diameter, D : network density, bc : average 

node betweenness centrality, max bc : maximum betweenness centrality, ˆ
ix : the mean value of the normalized synthetic node features, ( )ˆVar iX : the variance of the 

normalized synthetic node features, (*): the number in the brackets represents the difference between synthetic networks and original networks. 

To better present the generation results, we give a more detailed study case for IEEE 39-bus system and its communication model. 



 

 

The generation results are given as shown in Fig. 4. Then, we form 

the interdependency for the synthetic CPS by following the 

“degree-to-degree” principle in [11] as shown in Fig. 5. In Fig. 

4(a), the numbers of load, generator, and zero injection nodes are 

15, 10, 14, respectively. In IEEE 39-bus system, the numbers are 

17, 10, 12, which have the close distribution of node type. Besides, 

in Fig. 4(b), the synthetic communication network has a clear tree 

structure as the input communication networks does, and it proves 

that our method can effectively learn the global structure 

characteristics of the input network. Moreover, we compare and 

visualize the generated node features as shown in Fig. 6. In Fig. 

6(a), the mean value (normalized) of the node features in IEEE 39-

bus system is 0.239, while in synthetic result the value is 0.287. In 

Fig. 6(b), the mean value (normalized) of the node features in real 

communication model is 0.418, while in synthetic result the value 

is 0.436. Meanwhile, the difference of the variances for two 

networks are 0.008 and 0.003, respectively. Therefore, it proves 

that the Graph-CPS can generate realistic synthetic network 

features. Therefore, the experimental results prove that Graph-

CPS is capable of capturing both the different topological statistics 

and the network feature distribution of the original networks. 

 
                                    (a)                                                          (b) 

Fig. 6 (a) Comparison of node feature for IEEE 39-Bus system, (b) Comparison 

of node feature for IEEE 39-Bus communication system. 
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