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Abstract—In this paper, a robust data-driven method for fault detection
in photovoltaic (PV) arrays is proposed. Our method is based on
the random vector functional-link networks (RVFLN) which has the
advantage of randomly assigning hidden layer parameters with no tuning.
To eliminate the effect of measurement noise and overfitting in the
training process which reduce the fault detection accuracy, the sparse-
regularization method is utilized which uses l2−norm with loss weighting
factor to compute the output weights. To attain a strong robustness
against the outlier samples, the non-parametric kernel density estimation
is employed to assign a loss weighting factor. Through rigorous simulation
studies, we validate the performance of our proposed method in detecting
the short and open circuit faults based on only the output current and
voltage measurements of PV arrays. In addition to a stronger robustness
comparing with the least square-support vector machine, we also show
that our proposed method provides 80% and 100% average detection
accuracy for short circuit and open circuit, respectively.

Index Terms—Canonical correlation analysis, fault detection, photo-
voltaic array, random vector-link network, sparse-regularization.

I. INTRODUCTION

Despite advanced technologies in photovoltaic (PV) power genera-
tion deployment, PV systems are exposed to the faults that negatively
affect their efficiency and profitability. Undetected faults in PV
systems may lead to loss of power in the system as well as fire-
hazards and safety issues. Conventional protection and fault detection
methods used in PV systems include overcurrent protection devices
(OCPDs), ground fault detection interrupters (GFDI) and fuses [1],
[2]. However as demonstrated in the literature, the faults occurring
under low mismatch and high impedance conditions do not change
the output of PV arrays comparing to their operation under normal
conditions, thus they are not detectable by the conventional methods
and without suitable fault detection algorithms [3]. In addition, the
blocking diodes protecting the system from back-feeding current and
active maximum power point tracking (MPPT) module may mask
the faults; in the case of blocking diodes, the induced back-feeding
current is insufficient to melt the protective fuses; when MPPT is
active, although the back-feeding current exceeds the fuse threshold,
it is suddenly lowered down by MPPT, meaning that it is insufficient
to melt the fuse [4].

In the literature, numerous PV fault detection and diagnosis
methods have been proposed which are classified under two groups:
model-based and data-driven. In the model-based approaches, the
real-time measurement data is compared with the parameters of the
analytical PV model to detect the faults [5]–[9]. Regarding the model-
based methods, an effective kernel generalized likelihood ratio test
method is used in [5] for the detection of the faults in low mismatch
and partial shading conditions, and the authors in [6] propose a
method based on I-V characteristics of PV system for the detection of
short-circuit (SC) and open-circuit (OC) faults; a statistical approach
is proposed in [7] using a one-diode model for the detection of SC,
OC and partial shading faults; in [8], DC-side faults are detected
by a method comparing estimated PV array parameters and actual
measurements, in which the method recognizes the faulty condition
using the eagle strategy-based hybrid adaptive Nelder-Mead simplex
algorithm; to detect the ground, OC and bridge faults, the authors

in [9] propose to use the fractional-order color relation classifier.
Although the model-based methods require less equipment and are
applicable to a variety of PV systems, they have low fault detection
accuracy due to the difference between the actual system and the
simulated model, similar operation under low mismatch and high
impedance conditions, non-linear operation characteristics of PV
systems and ever-changing environmental conditions.

In the data-driven approaches, however, the collected data from
the PV system operation is used to extract the faults’ features and
detect them in real-time using measurement data [10]–[15]. Various
methods based on signal processing, computational intelligence and
machine learning techniques have been proposed by the researchers;
unsupervised-based dilation and erosion clustering algorithms are
proposed in [10] for the detection of SC and OC faults; using wavelet-
based artificial neural network (ANN), an algorithm is developed in
[11] for the fault detection on both DC and AC sides of the PV
system; in [12], SC and partial shading faults are detected by the
wavelet packet transforms using only MPPT information; the authors
in [13] propose the support vector machine (SVM) based on the
multi-resolution signal decomposition (MSD) to detect the SC faults,
while an MSD-based fuzzy reference system is proposed in [14]
for SC and ground faults detection; an algorithm called graph-based
semi-supervised learning is proposed in [15] for the detection of SC
and OC faults. Although those methods have shown an acceptable
accuracy, they might not be practical due to the requirement of
large training data, time-consuming training steps, parameter setting,
sensitivity to the measurement noise, possible overfitting, and low
generalization performance.

To address the issues discussed above, we propose a new method
based on the random vector functional-link networks (RVFLN) for
SC and OC faults detection in the PV system. Our proposed method
works using the output current and voltage measurements of PV
array. The features used to distinguish faulty conditions from normal
operation are derived from the recorded current and voltage mea-
surements. To decrease the computational complexity of the detection
method and increase the efficiency of algorithm, the dimension of the
extracted features are reduced by the canonical correlation analysis
(CCA). Then, a sparse-RVFLN system is built, and finally the trained
sparse-RVFLN system is tested using unseen actual data for model
evaluation and performance. The contributions of this work are as
follows:
• To the best of our knowledge, CCA for the first time is intro-

duced for PV fault detection which helps to increase detection
accuracy in case of hard-to-detect faults, e.g. high impedance
and low mismatch SC faults.

• Our method processes large scale real-time data, and it shows a
faster learning procedure than the reported conventional methods
in the literature.

• RVFLN weights are calculated using sparse-regularization,
which not only increases the fault detection accuracy, but also
strengthens its robustness against the outlier samples resulting
from overfitting, measurement noise, and sensor and measure-
ment errors which are missing in most of the conventional



methods.

II. PROPOSED PV FAULT DETECTION METHOD

In this section, we first show how feature vectors are constructed
based on the output voltage and current measurements of PV array.
Then, CCA, which provides the distinctive properties to algorithm for
high impedance and low mismatch SC faults, is used to create a new
feature space. Finally, the sparse-RVFLN classifier using l2 − norm
and non-parametric kernel density estimation(NKDE) to reduce the
impact of the noise are introduced.

A. Data Pre-processing

1) Feature Construction: To detect the faults occurring in PV
array and distinguish them from normal system operation, the feature
vectors must be constructed from the measured output current and
voltage. To cover different faults, we construct 10 feature vectors
which are listed in Table I.

TABLE I
FEATURE VECTORS USED FOR FAULT DETECTION.

Features Notation Formulation
F1 Inorm IMPP /ISC−Array

F2 Vnorm VMPP /VOC−Array

F3 FF IMPPVMPP /ISCVOC

F4 Acurve
∫ VOC
0 IdI

F5 Xs dI/dV

F6 Xs−irr Inorm/Vnorm ∗ irr
F7 ∆Xs at VOC dI/dv|VOC

F8 ∆Xs at mVOC dI/dv|mVOC

F9 ∆Xs at ISC dI/dv|ISC

F10 ∆Xs at mISC dI/dv|mISC

Among the feature vectors, the first two (F1 and F2) are obtained
by normalizing the measured current and voltage to ensure the
applicability of the proposed algorithm to the PV systems with
various size and avoid re-tuning the parameters. IMPP and VMPP

are, respectively, the maximum current and voltage, and ISC−Array

and VOC−Array denote the SC current and OC voltage, respectively.
The third feature (F3) is the fill factor indicating the maximum
normalized power to be supplied by the PV array. Although both
irradiation variation and faults change the fill factor, the faults in the
system result in more abrupt changes comparing to the irradiation.
Thus, using the fill factor is effective in detecting the SC faults. As
the shape of I-V curve is significantly affected by partial shading, the
fourth feature (F4), which refers to the area under the curve, is used
to distinguish the faults from partial shading occurring under normal
operating conditions. The fifth feature (F5) describes the derivative
of conductance, and the sixth feature (F6) aims to reduce the effect
of irradiation on conductance as any variation in irradiation changes
F5. The seventh feature (F7), i.e. the rate of change of conductance
at VOC , and the eighth feature (F8) is mVOC , which refers to the
rate of change of conductance at the middle point between OC and
maximum power points. These features are constructed to detect SC
faults occurring under low mismatch and high impedance which are
close to the normal operating conditions. The last two features (F9

and F10), which provide advantages in the detection of OC faults
close to the normal operating conditions, refer to the rate of change of
conductance at SC point and middle point between, SC and maximum
power points, respectively.

B. Feature Extraction by CCA

If all feature vectors are used in the fault detection algorithm,
computational complexity will critically increase and affect the effi-
ciency and accuracy of the algorithm. Therefore, CCA is introduced
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Fig. 1. CCA based RVFLN’s structure.

to extract a number of features from high-dimensional correlated
features.

CCA is a statistical technique used to find the low-dimensional lin-
ear projections of two maximally correlated high-dimensional random
vectors [16], [17]. Let us assume that Fi = [Fi1, Fi2, · · · , FiN ]T ∈
Rn is the feature vector, and Y is the class label. If there is a
main feature F1 and an auxiliary feature of F2 of dimension N
and c : Rn → {1, · · · ,M} M classes classifier, providing the
(F1,F2,Y) ∼ FF1F2,Y , be an Rn × Rn × {1, · · · ,M} pair, then
CCA is applicable on (F1,F2) pair to derive the projection A based
on main F1 and auxiliary F2 features. The identification of CCA
projection A = A(F1,F2) can be addressed as the problem of
finding two sets of canonical vectors {ai} and {aj} to maximize
the correlation between a

′
iF1 and a

′
jF2 for each i, j = 1, 2, ..., r.

Dimension reduction for F1 is obtained from Rn to Rr before a
classification operation. Then, a pair of conical vector set is defined
as follows.

{ai, aj} = argmin
a
′
iΣF1F2a

′
j√

a
′
iΣF1ai

√
a
′
jΣF2aj

(1)

A matrix is defined as the CCA projection matrix for F1, and Fp
1 =

A
′
F1 ∈ Rr is the projected feature vector. Where A

′
= [a

′
1, . . . , a

′
r].

Features (F1,F3,F5,F7,F9) and (F2,F4,F6,F8,F10) are deter-
mined as main and auxiliary features, respectively.

C. RVFLN’s Model Establishment

RVFLN which its structure is presented in Fig. 1 is developed as
a single hidden layer feedforward networks [18]. RVFLN has been
successfully used in various engineering practices [19]–[22] for the
purposes of regression and classification since their development.
The advantage of RVFLN is the random assignment of weights
between the input layer and the hidden layer and the lack of need
for tuning. Output weights are calculated with least squares (LS)
algorithm. Practically, unlike the gradient-based learning techniques
which require the learning parameters to be predefined and training
may take several minutes to several hours to ensure the convergence,
RVFLN can process data in real-time in most of the engineering
applications.

If Fp
i = [F p

i1, F
p
i2, ..., F

p
iN ]T ∈ Rn and Yi =

[Yi1, Yi2, ..., YiM ]T ∈ Rm are identified as the input and output
vectors, respectively, RVFLN with hidden layer L can be defined as:

yi (F p
i ) =

L∑
j=1

βjh (< aj , F
p
i > +bj) , i = 1, 2, ...,M, (2)

where yi(F p
i ) is the output of RVFLN, aj = [aj1, aj2, · · · , ajL]T ∈

Rl is the hidden weight vector which connects the input layer and



the hidden layer and is generated randomly in a specific probabilistic
space, βj = [βj1, βj2, · · · , βjM ]T ∈ Rm is the output weight and
must be calculated, bj = [bj1, bj2, · · · , bjL]T ∈ Rl indicates the bias
of hidden node, < aj , F

p
i > refers to the inner product of vectors aj

and F p
i and h(.) denotes the activation function which satisfies both

conditions below:∫
R

h2 (x) dx or

∫
R

[
h

′
(x)
]2
dx <∞. (3)

The learning purpose of RVFLN is to minimize the error between
the model outputs and actual outputs by calculating the βj , aj and
bj values which satisfy:

L∑
j=1

βjh (< aj , F
p
i > +bj) = yi, j = 1, 2, ...,M, (4)

which can be compactly defined as:

Hβ = Y, (5)

where H is the hidden output matrix, β is the output weight matrix
that needs to be evaluated and Y is the target output matrix. Those
are specifically defined as follows:

H (a1, . . . , aL, F
p
1 , ..., F

p
M , b1, . . . , bL) =

H1

...
HM



=

h (< a1, F
p
1 > +b1) . . . h (< aL, F

p
1 > +bL)

...
. . .

...
h (< a1, F

p
M > +b1) . . . h (< aL, F

p
M > +bL)


β =

[
βT
1 . . . β

T
L

]T
Y =

[
yT1 . . . y

T
M

]T
.

(6)

After randomly assigning the parameters (a1, ..., aL, b1, ..., bL) to
train the network and find the optimal output weights, functional
link networks are trained, and the optimal output weight network β̂
is obtained with the help of LS by:

β̂ = argmin ‖Hβ −Y‖2 , (7)

where β̂ = H†Y , and H† =
(
HTH

)−1
HT is the Moore-Penrose

generalized inverse of H.
1) Sparse RVFLN: Sensor error and measurement noise occur

in practical applications. We propose to calculate the RVFLN’s
output weights by sparse-regularization method in order to eliminate
the noise and avoid overfitting that may negatively affect the fault
detection accuracy. The spare-regularization RVFLN includes regu-
larization term, i.e. l2 − norm, in the objective function [23]–[25]
and can be represented by:

β̂ =
1

2
‖β‖22 +

D

2

N∑
i=1

ε2i s.t yi −Hβ = εi, (8)

where N is the number of the discrete training samples. Parameter D
ensures regularization between ‖β‖22 and the training error and can
be computed via Morozov’s discrepancy principle [26]. The output
weight norm and training error represent the structural and empirical
losses, respectiviley, in (8). In order to improve robustness of the
proposed method, NKDE and sparse-RVFLN with loss weighting
factor are used. The loss weighting factor can attenuate the effect
of noise for both small and long length samples which are also
known as the low and high reliability samples, respectively. The long

length samples presents the normal data while the low length samples
include noise. Therefore, we modify (8) as the following:

β̂ =
1

2
‖β‖22 +

D

2

N∑
i=1

qi ‖εi‖22

s.t yi −Hβ = εi,

(9)

where qi is the loss weighting factor for the ith sample, and β̂ is
defines as:

β̂ =

{
HT ( 1

D
+ QHHT )−1QY, N < L

( 1
D

+ HTQH)HTQY, N > L
, (10)

where qi is the diagonal element of Q matrix and i = 1, ..., N . We
set Q as the identity matrix and use NKDE to obtain the probability
density function for the residuals. A Residual function for sparse-
RVFLN can be define as:

rj =
L∑

j=1

βjh (< aj , F
p
i > +bj)− yi, i = 1, 2, ..., N. (11)

According to (11),the probability density function is represented as:

f (x) =
1

hN

n∑
j=1

φ
(x− rj

h

)
, (12)

where h = 1.06σN−1/5 indicates the width of the estimated window,
σ represents the standard deviation and φ is Gaussian kernel function
which is shown by:

φ (x) =
1√
2π

exp−1

2
x2. (13)

Using (12), the probability density function f (rj) can be calculated
for each residual, and Q can be set according to f (rj). Algorithm
1 shows the implementation of sparse-RVFLN for real-time fault
detection in PV arrays.

Algorithm 1: CCA based sparse-RVFLN algorithm.

1 Construct feature vector Fi = [Fi1, Fi2..., FiN ]T .
2 Define main and auxiliary features, and apply CCA to obtain

projection feature vector Fp
i = [Fi1, Fi2..., FiN ]T .

3 Calculate D parameter by Morozov’s discrepancy principle.
4 Inputs: Projection feature vectors, number of hidden layers

and D .
5 Generate randomly hidden node parameters (wi, bi).
6 Calculate hidden layer output H.
7 Set Q as the identity matrix.
8 for j=1 to L do
9 for i=1 to N do

10 Calculate residuals rj using (11).
11 Construct Q by (12) and (13).
12 end
13 end
14 Calculate the output weight β̂ for each output node according

to (10).
15 Output: Output weight β̂.

III. CASE STUDIES

In this section, we evaluate the performance of the proposed
sparse-RVFLN method for PV fault detection through comprehensive
numerical simulation and experiments.
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Fig. 2. Simulated PV array with potential SC and OC faults.

A. Numerical Setup

We implement the PV system in PSCAD/EMTDC and the pro-
posed fault detection method in MATLAB for the numerical simula-
tion. The ungrounded PV array system shown in Fig. 2 consists of
10 PV arrays connected in parallel each of which includes 10 series
modules with bypass diodes. To show the performance of our fault
detection method, we run the simulation studies for various operating
and environment scenarios including different mismatch percentage
levels, weather temperatures, irradiation values, and fault instances
and impedances. In the following, more details are provided for the
simulated scenarios.

1) SC Faults: They are line-to-line (LL) faults occurring
under 2250 different conditions. The conditions include a
combinations of different fault scenarios such as the irradi-
ation levels (200, 400, 600, 800, 1000) [W/m2], different mis-
match percentages (10, 20, 30, 40, 50, 60) %, several temperatures
(10, 20, 30, 40, 50) [◦C], different fault impedances (0, 5, 15, 25) [Ω],
and positive, negative and negative-to-positive zero-crossing.

2) OC Faults: These faults are simulated for 150 different scenar-
ios under the conditions similar to the SC faults. The OC faults are
classified into two groups called Group1 and Group2. The former
includes The OC faults close to the normal operating conditions,
where only one string is faulty at a moment. On the other hand,
Group2 includes the OC faults not close to the normal operating
conditions, where multiple strings are faulty.

3) Normal Operating Conditions: To distinguish SC and OC
faults from normal operating conditions, the PV system is simu-
lated for 600 different normal operating scenarios under different
temperatures, mismatch percentages, fault impedance, and irradiation
conditions.The training data set includes 280, 20 and 75 scenarios for
SC faults, OC faults and normal operation conditions, respectively.

B. Simulation Results and Discussion

Simulation results of the fault detection algorithm demonstrate the
high accuracy of the proposed algorithm. Results are presented in
Table II for SC faults.

TABLE II
RESULTS FOR THE SIMULATED SC FAULTS.

Mismatch Fault Impedance [Ω] Average (%)
Percentage (%) 0 5 15 25 Accuracy

60 100 100 96.7 91.5 97.1
50 100 98.9 92 90.3 95.3
40 97 95.4 76 74.2 85.7
30 92.4 88.2 70.5 60.3 77.8
20 88.8 73.7 52.2 47.3 65.5
10 74.3 53.5 46.4 40.3 53.6

The proposed method has the fault detection accuracy over 95% in
cases with 50% or higher mismatch and all fault impedances for SC

faults. As the fault impedance increases, and the mismatch percentage
decreases, it is quite difficult to detect faults because they are close
to normal operating conditions. For instance, inn cases of SC faults
with less than 30% mismatch and more than 15Ω fault impedance,
the algorithm has a fault detection accuracy of above 55%. On the
other hand, the algorithm has the fault detection accuracy of 100%
for OC faults which are close to SC faults and normal operating
conditions (e.g. OC fault in one string), and OC faults occurring in
multiple strings. The results of fault detection accuracy assessment
in OC fault scenarios are given in Table III.

TABLE III
RESULTS FOR THE SIMULATED OC FAULTS.

Irradiance [W/m2] Average
Group # Temperature [◦C] 200 400 600 800 1000 Accuracy(%)

1 10 100 100 100 100 100 100
50 100 100 100 100 100 100

2 10 100 100 100 100 100 100
50 100 100 100 100 100 100

Fig. 3 and 4 show the SC and OC fault detection accuracy of the
proposed method in comparison with LS-SVM and LS-RVFLN meth-
ods. According to the results, sparse-RVFLN has a better detection
accuracy for both SC and OC faults owing to calculating the output
weights of RVFLN by sparse estimation method.

0 20 40 60
Mismatch (%)

40

60

80

100

A
cu

ur
ac

y 
(%

)

Sparse-RVFLN
LS-SVM
LS-RVFLN

0 10 20 30
Fault Impedance (+)

50

60

70

80

90

100

A
cu

ur
ac

y 
(%

)

Sparse-RVFLN
LS-SVM
LS-RVFLN

Fig. 3. Comparison of SC fault detection accuracy by Sparse-RVFLN, LS-
SVM, and LS-RVFLN.
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Fig. 4. Comparison of OC fault detection accuracy by Sparse-RVFLN, LS-
SVM, and LS-RVFLN.

1) SC-OC Faults with Noisy Measurements: To test the robustness
of the proposed method against noisy measurements, the samples are
selected randomly at the ratios of 5%, 15%, 25%, 35% and 45%
from the training dataset, and the noisy dataset is generated. detection
accuracy results including noisy measurement are given in Table IV
for SC and OC faults. The results show that fault detection accuracy
of the other methods decreases due to the noisy measurements, while
sparse-RVFLN provides an acceptable detection accuracy for both SC
and OC faults.

2) Comparison of Computational Efficiency: Assigning input
weights randomly and calculating the output weights with training,
which is required by the conventional algorithms enable RVFLN to
process and learn data fast which is suitable for practical application.
Comparison of the proposed method and other conventional methods
is presented in Table V.



TABLE IV
SC AND OC FAULTS DETECTION ACCURACY WITH NOISY

MEASUREMENTS.
Average Accuracy (%)

Fault Type Method Noisy Noiseless

SC
RVFLN 60.4 70.2

Sparse-RVFLN 77.3 79.1
LS-SVM 65.7 73.6

OC
RVFLN 83 89.1

Sparse-RVFLN 98 100
LS-SVM 86.2 91.4

TABLE V
COMPUTATIONAL EFFICIENCY OF RVFLN, SPARSE-RVFLN AND

LS-SVM.

Method Training Time (sec) Testing Time (sec)
RVFLN 0.0125 0.0035

Sparse-RVFLN 0.1257 0.0045
LS-SVM 0.7264 0.9345

IV. CONCLUSION AND FUTURE WORK

In this paper, a new sparse-RVFLN method is proposed for
the detection of SC and OC faults in PV arrays. New features
are constructed and transformed by CCA to lower the dimension
space and improve fault detection accuracy for hard-to-detect fault
conditions such as low mismatch, high impedance, and active MPPT.
In addition, sparse-regularization is used to calculate RVFLN’s output
weights to minimzie the effect of measurement noise and overfitting
on the detection accuracy. The performance of the proposed method
is verified by both simulation and experimental setup. In SC fault
scenarios with low mismatch and high impedance fault, which are
close to normal operating conditions, the proposed method provides
a detection accuracy of minimum 77.5% for 30% low mismatch
and all fault impedances, while it results in a detection accuracy
of 100% in all OC fault scenarios. The proposed spare-RVFLN
method is also compared with the conventional RVFLN and LS-
SVM. The measurements with noise, in particular, reduce the fault
detection accuracy of LS-SVM and RVFLN while it does not degrade
the sparse-RVFLN performance. Furthermore, sparse-RVFLN has a
higher computational efficiency than the conventional RVFLN and
LS-SVM.

Notwithstanding the fact that the DC-side faults in PV arrays
are investigated in this paper, numerous other faults occur in PV
systems including ground SC, partial shading, arc and hot-spot faults.
Therefore, we will focus on the development of the algorithms
enabling the detection of those faults in our future research.
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