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Abstract This study presents an innovative approach to risk‐aware decision‐making in water resource
management. We focus on a case study in the Netherlands, where risk awareness is key to water system design
and policy‐making. Recognizing the limitations of deterministic methods in the face of weather, energy system,
and market uncertainties, we propose a scalable stochastic Model Predictive Control (MPC) framework that
integrates probabilistic forecasting, scenario generation, and stochastic optimal control. We utilize Combined
Quantile Regression Deep Neural Networks and Non‐parametric Bayesian Networks to generate probabilistic
scenarios that capture realistic temporal dependencies. The energy distance metric is applied to optimize
scenario selection and generate scenario trees, ensuring computational feasibility without compromising
decision quality. A key feature of our approach is the introduction of Exceedance Risk (ER) constraints, inspired
by Conditional‐Value‐at‐Risk (CVaR), to enable more nuanced and risk‐aware decision‐making while
maintaining computational efficiency. In this work, we enable the Noordzeekanaal–Amsterdam‐Rijnkanaal
(NZK‐ARK) system to participate in Demand Response (DR) services by dynamically scheduling pumps to
align with low hourly electricity prices on the Day Ahead and Intraday markets. Through historical simulations
using real water system and electricity price data, we demonstrate that incorporating uncertainty can
significantly reduce operational costs—by up to 44 percentage points compared to a deterministic approach—
while maintaining safe water levels. The modular nature of the framework also makes it adaptable to a wide
range of applications, including hydropower and battery storage systems.

Plain Language Summary This research introduces a new method for managing water resources in
the Netherlands that considers uncertainties in weather, sea‐levels, and energy markets. Traditional methods
often ignore these uncertainties, which can lead to inefficiencies and higher costs. Our approach combines
advanced forecasting techniques and decision‐making strategies to better account for these unpredictable
factors. Using cutting‐edge computer models, we predict future conditions as multiple scenarios with assigned
probabilities. These predictions guide decisions about when to operate water pumps, aiming to save energy costs
while keeping water levels safe. By enabling the Noordzeekanaal–Amsterdam‐Rijnkanaal (NZK‐ARK) system
to adjust pumping schedules in response to electricity price fluctuations, we show that this approach can achieve
significant cost savings—up to 44 percent compared to traditional methods. Our method is flexible and can be
applied to other systems like hydropower plants or battery storage facilities, demonstrating its potential for
broader use. This study shows how combining risk‐aware forecasting and operational strategies can improve the
efficiency and safety of water management systems while supporting the energy transition.

1. Introduction
The energy transition represents a path toward sustainability and resilience in the face of global climate change. In
Europe, this journey is characterized by the integration of intermittent Renewable Energy Sources (RES), the
smooth operation of an integrated European energy market, and the transition from a centralized to a distributed
grid infrastructure. These elements are key in achieving the European Union's goals for a climate‐neutral future.
However, overcoming challenges in infrastructural limitations, policy and market dynamics, and the variability of
RES is essential to secure an independent and climate‐neutral energy system.
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Flexibility in the energy sector is increasingly recognized as a cornerstone for successfully integrating RES into
the power grid (TenneT & Gasunie, 2022). As countries move toward more sustainable energy solutions, the
inherent intermittency of variable renewable resources such as wind and solar power presents new challenges.
Their variability introduces the need for innovative approaches to maintain a stable and reliable energy supply.
Demand Response (DR) is an approach to achieve demand‐side flexibility, and it refers to the changes in electric
usage by end‐use customers from their normal consumption patterns. These signals are achieved through prices
that reflect scarcity of supply and marginal cost of production. The variable supply of renewables leads to
changing electricity prices over time, and induces lower electricity use at times of high market prices. By enabling
dynamic adjustments of demand, DR contributes to the grid's stability, reduces the need for peak generation
capacity, and optimizes energy costs for consumers. European spot markets are designed to incentivize consumers
to adjust their energy usage in response to variable prices, giving DR its business case. By incorporating DR into
energy systems, consumers can leverage market mechanisms to achieve a more resilient, cost‐efficient, and
sustainable energy system.

The increasing variability and uncertainty in water resources management due to climate change, socio‐economic
shifts, and evolving energy demands necessitate adaptive strategies that leverage real‐time data and probabilistic
forecasts. Across the globe, water systems are under increasing pressure to balance competing demands for
irrigation, energy production, flood control, and ecological preservation (Verhagen et al., 2021). These challenges
are further exacerbated by the need for greater integration with renewable energy systems, which introduce
additional operational uncertainties. The ability to dynamically adapt to these uncertainties is essential for
maintaining the reliability and sustainability of water resources under changing conditions.

Recent advancements in real‐time monitoring technologies and forecasting methods have enabled a shift from
traditional rule‐based management approaches to more sophisticated adaptive frameworks (Castelletti
et al., 2023). Probabilistic forecasts, in particular, have emerged as a critical tool for representing uncertainty and
enabling more informed decision‐making. By accounting for a range of possible future scenarios, these forecasts
provide the basis for strategies that can adapt dynamically to changing conditions, ensuring resilience and effi-
ciency in water resources management.

The Netherlands, facing unique geographical challenges, has developed significant expertise in water manage-
ment. Much of its land is below sea level, requiring methods to manage precipitation and groundwater levels. In
the past, pumping stations with rule‐based or deterministic model predictive control (MPC) have been central to
these management efforts. However, as climate change can lead to more unpredictable weather, the limits of
deterministic approaches are being reached. This situation incentivized a move toward adaptive strategies,
leveraging real‐time data and probabilistic forecasts in the optimization process. These advances enable more
effective adaptation to increasingly variable climatic conditions and evolving hydrological regimes within the
catchments, improving overall water management resilience (Castelletti et al., 2008, 2023; Giuliani et al., 2021).

Stochastic MPC approaches can employ chance constraints to ensure that certain conditions are met with a
predefined probability level (Mesbah, 2016). However, their inherent binary nature, indicating that they either
meet the conditions or don't, overlooks the potential magnitude or likelihood of constraint violations, which is
critical in applications such as water management. Additionally, while robust optimization techniques aim to
handle uncertainty by considering the worst‐case scenarios, they can also be overly conservative, leading to
suboptimal or overly cautious operational decisions that may not capitalize on potential opportunities or effi-
ciencies. In stochastic MPC, uncertainty can be addressed explicitly by specifying the probability distribution
functions of uncertain variables, or implicitly through sets of scenarios derived from ensemble hydro‐
meteorological forecasts. Recent literature often favors these implicit approaches, not only because they can
incorporate model uncertainty but also because they can organize large scenario ensembles into structured sce-
nario trees. Such trees capture the temporal evolution and dependency of uncertainties while reducing compu-
tational complexity compared to using ensembles directly (Castelletti et al., 2023). Generally, explicit approaches
do not account for autocorrelation in disturbances or forecast errors (Castelletti et al., 2008; Pianosi & Soncini‐
Sessa, 2009), which can relatively easily be implicitly taken into account in scenario sets.

Adapting to the unpredictability of weather and its impact on water levels requires sophisticated forecasting
methods. The integration of probabilistic forecasts not only enhances prediction accuracy but also enhances
dynamic responses such as Demand Response (DR) in the energy sector to achieve a necessary balance between
supply and demand. DR refers to the changes in electric usage by end‐use customers from their normal
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consumption patterns. These signals are achieved through prices that reflect scarcity of supply and marginal cost
of production. The variable supply of renewables leads to changing electricity prices over time, and induces lower
electricity use at times of high market prices. In DR, inaccuracies in forecasting can significantly impact system
efficiency, leading to both operational challenges and financial consequences for consumers and producers. With
the increasing reliance on renewable energy sources, accurately forecasting energy production has become more
complex. This unpredictability and complexity call for enhanced predictive models that adequately reflect the
operational uncertainty given the latest information. Moreover, integrating stochastic optimization methods into
energy management strategies can mitigate the risks associated with operational uncertainty. These methods
enable the consideration of multiple possible future scenarios in the decision‐making process, thus providing a
more comprehensive strategy that accounts for a wide range of outcomes. By adopting a probabilistic approach to
forecasting and optimization, stakeholders can better prepare for and adapt to the inherent volatility associated
with Renewable Energy Sources and demand fluctuations and the operational risk involved in their processes
(Pape, 2018; Sahu & McLaughlin, 2018; Sweeney et al., 2020), inspiring research in uncertainty estimation in
forecasting and making it an increasingly present industry requirement (Bessa et al., 2017; Makridakis
et al., 2022; van der Heijden, Palensky, & Abraham, 2021). Similarly, ensemble forecasts have also become a
standard in hydro‐meteorological forecasting due to their ability to capture forecast uncertainty (Castelletti
et al., 2023; Zhao et al., 2021).

Central to this study are the uncertainties faced in operational water resources management, from variable dis-
charges to dynamic seawater levels influenced by tides and winds. The inherent volatility of energy spot markets,
combined with real‐time supply demand dynamics, and the integration of renewable energy, exemplify the need
for advanced forecasting methodologies. This motivated our exploration into probabilistic methodologies, such as
the Combined Quantile Regression Deep Neural Network (van der Heijden, Palensky, & Abraham, 2021)
(CQRDNN) and the Non‐parametric Bayesian network (van der Heijden, Palensky, et al., 2022) (NPBN). Our
framework integrates probabilistic forecasting, scenario generation, and reduction approaches. We further extend
the scenario‐based MPC approach into Tree‐based MPC (TB‐MPC) (Maestre et al., 2013; Raso et al., 2014)
formulations for improved and sometimes necessary computational efficiency in large uncertainty
representations.

Our approach emphasizes risk‐based constraints, inspired by the Conditional‐Value‐at‐Risk (CVaR) approach,
also known as the mean excess loss (Rockafellar & Uryasev, 2000). CVaR represents the tightest convex
formulation of a chance constraint (Venkatasubramanian et al., 2020), while its linear formulation leads to
reduced computational complexity. Unlike traditional chance constraints or robust optimization methods, CVaR
represents the tail distribution of potential outcomes, revealing worst‐case scenarios and associated risks. We
propose the use of Exceedance Risk (ER) constraints that are formulated similarly to CVaR, but are tailored for
the application in operational water resources management. In the Dutch water sector, risk‐awareness is key to
system design and policy‐making. Our work considers probabilistic risk of exceedances for water levels in real‐
time operational control. We formulate a stochastic MPC problem, where the states are stochastic variables driven
by uncertain disturbances and parameters, and the objective and constraints are formulated as expectation of cost
and probabilistic constraint violations, respectively. As such, the optimal control problem of the MPC requires
solving stochastic optimization problems via a scenario‐based approach. We also specifically consider CVaR‐
type stochastic problems to model water‐level exceedance risks.

In response to the societal challenges posed by climate variability and the energy transition on water management
systems, this manuscript introduces several novel methodologies to capture dependencies between weather,
markets, and control decisions, and shows how to exploit these in control for our case study area, the drainage
canal Noordzeekanaal–Amsterdam‐Rijnkanaal (NZK‐ARK). First, we expand the use of probabilistic forecasts to
open canal systems and demand response applications, areas where their adoption has been limited. We propose a
Combined Quantile Regression Deep Neural Network (CQRDNN) (Section 3.1), which leverages deep learning
to provide probabilistic forecasts of water levels and energy demands. Unlike traditional models, CQRDNN
incorporates a quantile‐based approach that inherently manages forecast uncertainty, offering a range of potential
outcomes crucial for effective decision‐making under uncertainty.

Second, we introduce a Non‐parametric Bayesian network (NPBN) (Section 3.3) for generating conditional
scenarios that respect the temporal dynamics of water systems and energy markets. This method allows for a more
realistic simulation of future states, enhancing the strategic planning capabilities of water resource managers. This
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novel combination improves computational efficiency, which is critical for real‐time operational adjustments
while allowing for incorporating advanced risk‐based constraints and a stochastic objective tailored for water
management and DR. We further propose the energy distance (Ziel, 2020) for scenario subset selection and
propose a scenario‐tree generation method (Section 3.5) to further reduce the computational complexity of the
optimization problem by applying TB‐MPC.

Third, we integrate these ensembles into stochastic optimization frameworks, an approach not yet widely
explored in water management applications. We introduce the ERmeasure (Section 4) as a novel reformulation of
chance constraints. ER constraints are designed to efficiently manage operational risk on water level bound
exceedance. Lastly, we demonstrate how this integrated framework enables energy flexibility services from
safety‐critical infrastructure, such as electric pumping stations, under operational uncertainty. These contributions
significantly advance risk‐aware decision‐making for interconnected water and energy systems.

By examining the operational flexibility of electric pumping stations and their role in the broader energy system,
this manuscript aims to contribute to a more sustainable and integrated approach to managing the in-
terdependencies between water and energy in the Netherlands. The presented innovations collectively enhance
the ability of water management systems to operate efficiently in the face of uncertainty, optimizing both water
usage and energy expenditure. The integration of these methodologies not only addresses the immediate needs of
operational control but also sets a foundation for future research and application in sectors grappling with similar
variability and uncertainty, notably in the context of energy flexibility and DR.

2. Demand Response in the Netherlands: Case Study IJmuiden
In this section, we describe the case study for our proposed framework. First, we describe the water system; the
NZK‐ARK, located in IJmuiden, the Netherlands (Section 2.1). Then we describe the Dutch electricity markets
that are considered for DR services which recent studies have shown to offer significant flexibility and cost
reduction potential (van der Heijden, Lugt, et al., 2022) (Section 2.2).

2.1. The Noordzeekanaal–Amsterdam‐Rijnkanaal

The NZK–ARK is an intricate open canal system. It's equipped with multiple undershot gates and has a pumping
station at IJmuiden, which aids in consistently directing water into the North Sea, regardless of the sea's variable
water levels. Water from four regional water boards flows into the NZK–ARK, helping redirect excess rainwater.
This water is methodically channeled or pumped out to the North Sea. A detailed representation of this water
system, focusing on the inflow and outflow mechanisms, is provided in Figure 1a. A simplified schematic of the
system is presented in Figure 1c.

The operations at the IJmuiden pumping station highlight the complexities in decision‐making caused by the
presence of operational uncertainty. IJmuiden is not only Europe's largest pumping station, but also plays a key
role in managing ship traffic, controlling saltwater intrusion, and working with four local water authorities. The
complexity of its operations is further amplified with the possible addition of Demand Response (DR) and energy
trading in the spot market. Previous work has shown that a control strategy that taps into varying electricity prices
from the Day Ahead Market (DAM) and the Intraday Market (IDM) could prove more cost‐effective than the
current method, especially as the penetration of renewable energy grows (van der Heijden, Lugt, et al., 2022).
However, that analysis was based on perfect foresight and did not consider operational uncertainty. The inter-
action between water management and energy usage in pumping stations is increasingly significant within the
context of the water‐energy nexus (Dang Doan et al., 2013; Horváth et al., 2022; Pour et al., 2022). Despite this
significance, the opportunity to optimize pump schedules with regard for the energy markets is still largely
untapped in practice.

Within the MPC's internal model, the canal is depicted as a linear reservoir with predefined surface area. This
approach is consistent with the current control system of the NZK–ARK. Owing to the canal's considerable depth
and width, water movement occurs at reduced speeds, ensuring that friction remains minimal (Goedbloed, 2006).
The primary sources of water inflow come from the water board discharges and water from the Rhine directed
through Maarssen, the outflow is directed toward the North Sea.

At IJmuiden, the gate operations are dictated by specific water level differentials. They can be activated when
there's a 16 cm water level difference and deactivated at 12 cm. This modulation is necessary to account for the

Water Resources Research 10.1029/2024WR037115

VAN DER HEIJDEN ET AL. 4 of 27



contrasting densities of salt and freshwater, along with inherent system friction (Janssen, 2017). With automated
controls in place, these gates have a maximum discharge rate of 500 m3 s− 1, a precaution to protect the
foundation of the gate complex. The IJmuiden station incorporates six distinct pumps, with a combined
maximum power consumption nearing 6 MW. For modeling convenience, the MPC represents these multiple
pumps as a singular entity, merging their unique attributes. Even though there are six individual pumps, an
integrated approach is adopted, utilizing various Q–dH curves to represent the pumping station's overall
discharge ability. Another composite representation is designed to represent the pumping station's energy use in
a single equivalent PQH‐curve, encapsulating pump energy consumption in relation to discharge levels and the
pump head. A comprehensive description of these modeling techniques is available in van der Heijden, Lugt,
et al. (2022).

At present, the IJmuiden pumping station operates using MPC, focusing on energy efficiency by drawing power
from the Futures market with fixed‐price contracts. It works with a 24‐hr prediction, ensuring water levels stay

Figure 1. The Netherlands, Noordzeekanaal–Amsterdam‐Rijnkanaal. (a) The water management area of different local water authorities are shown by color. Pumping
stations owned by local water authorities are shown by red diamond, gate structures with red rectangles, and the IJmuiden gate‐ and pumping station with a yellow
diamond. (b) The water level regime of the NZK‐ARK showing target ranges and warning/emergency levels. The water levels are shown in m + NAP, which is the
standard reference for water levels in the Netherlands, equivalent to AmsterdamOrdnance Datum. (c) NZK‐ARK schematic for control, where the purple‐outlined items
indicate forecast variables, and the green‐outlined items indicate control variables.
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within set limits. To better fit the needs of energy trading on the DAM, we've expanded the prediction horizon to
48‐hr. This change allows for a detailed look at the cost‐saving potential of energy cost optimization over flexible
energy markets for the NZK–ARK system, and aligns the control system with DAM rules. We've considered
uncertainties in sea water levels, incoming discharge from local water authorities, and electricity prices. While sea
water levels and discharge, which directly affect operational constraints, are considered jointly in detail, elec-
tricity prices are addressed separately to focus on minimizing expected costs. By treating price scenarios inde-
pendently, the optimization can account for market variability without adding extra complexity or introducing
additional decision points within the control horizon.

2.2. Energy Markets in the Netherlands

The energy trading landscape in the Netherlands is predominantly facilitated through the DAM and the IDM, the
two main markets for trading renewable energy in Europe. These markets reward the exploitation of energy
flexibility through DR services. On the DAM, energy transactions are made a day in advance, with consumers
placing bids for the upcoming day in hourly blocks. By 12:00 CET each day, bids are collected on the Amsterdam
Power Exchange (APX)‐Endex, where the market establishes a price equilibrium where demand meets supply.

In contrast, the IDM offers a more dynamic trading environment, allowing participants to continuously buy or sell
energy in quarterly, half‐hourly, or hourly segments, sometimes up to just 5 min before the actual delivery time.
Due to this flexible nature, individual buy and sell orders set varying contract prices. This study utilizes the
volume‐weighted price over the 3 hours leading up to delivery, termed the ID3‐price. However, in real‐world
scenarios, every transaction could exhibit a distinct price. The IDM serves as a platform to adjust day‐ahead
plans and sidestep potential imbalances. Given its adaptability, many speculate that the IDM is poised to
become the primary trading platform for renewable energy in the near future (De Jong et al., 2017), a hypothesis
that is being confirmed by the yearly doubling of traded volume.

Both DAM and IDM incentivize participants to tailor their energy schedules in response to price signals that echo
supply scarcity and production costs. By adhering to such price‐sensitive DR strategies, there's potential for shifts
in energy consumption patterns in correspondence with price changes (Jordehi, 2019). Figure 2 shows a 2‐
Dimensional Kernel Density Estimate (KDE) that sheds light on the evolving trends of DAM and IDM prices
in the Netherlands. Interestingly, Dutch prices have demonstrated more pronounced fluctuations over the years,
which might be attributed to various factors, including the maturity of the market, changing consumption patterns
in the COVID pandemic, the lack of nuclear base‐load in France, and the Russian invasion of Ukraine leading to a
reduced gas and oil supply to Europe, and increased prices due to embargos. This caused spot market fluctuations
to increase from around 0–75 [€/MWh] in 2019 to − 200 – +600 [€/MWh] in 2022. Interestingly, the relative ID3
price seems normally distributed around the DAM price and has stayed in a similar range since 2020.

While the Futures market provides long‐term or base‐load trading opportunities, its fixed pricing model doesn't
facilitate the intermittent nature of renewable energy. As energy supply becomesmore uncertain, it is expected that
fixed‐price contracts will carry higher risk premiums, giving flexibility a business case. Energy users might turn to
the Futures market to hedge against risks, and producers find it useful to guarantee consistent sales. However, its
inherent rigidity with predetermined prices makes it less suited for strategies that aim to exploit energy flexibility.

In the following sections, we extend the multi‐market approach as defined in (van der Heijden, Lugt, et al., 2022)
to incorporate operational uncertainty. The proposed strategy combines both DAM and IDM, optimizing the

Figure 2. 2D‐KDE of top: the Dutch IDM electricity prices over the DAM prices, bottom: the relative IDM prices over the DAM prices (2019–2022).
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strengths of each. Combining multiple markets promises to amplify the efficacy of market‐based DR initiatives
(Schwabeneder et al., 2021). With the rising prominence of renewable energy sources, the roles of DAM and IDM
are set to further magnify in order to keep supply and demand in balance.

3. Modeling Operational Uncertainty
In this section, we describe the methods aplied to model the operational uncertainty and make it suitable for
scenario‐basedMPC.We first describe the CQRDNN to forecast quantiles of water levels, pumped discharge, and
electricity prices (Section 3.1), and then we describe the search algorithm used for feature and hyperparameter
optimization (Section 3.2). We continue with how an Non‐parametric Bayesian Networks can be applied to
sample time series from the regression quantiles with realistic temporal dependency (Section 3.3), and finish with
scenario reduction techniques for optimal subset selection (Section 3.4) and scenario tree generation
(Section 3.5).

3.1. Combined Quantile Regression Deep Neural Network

Operational uncertainty is characterized by both variability and unpredictability. We propose the use of the
CQRDNN (van der Heijden, Palensky, & Abraham, 2021) for modeling operational uncertainty in incoming
waterboard discharge, the water level of the North Sea, and the DAM electricity prices. The CQRDNN, a neural
network architecture, is well‐suited to capture non‐linear data patterns and can be applied domain‐free, leading to a
manageable workflow complexity. The advantage of the CQRDNN is its ability to address the crossing quantile
problem observed in ensemble models, where individual quantiles are represented by separate models. Ensemble
models can display non‐monotonicity, an issue where higher quantiles provide values lower than those of lower
quantiles.

To address this problem, the CQRDNN employs a combined quantile loss function, which enables the training of
multiple quantiles within a single DNN, benefiting the natural order of quantiles. The architecture of the
CQRDNN is illustrated in Figure 3. In this work, we forecast 13 quantiles (0.01, 0.05, 0.1, 0.2, …) to represent the
operational uncertainty at a given time step.

Training the model involves the use of the pinball loss functions (Koenker & Bassett, 1978), sometimes referred
to as the quantile regression error function.

Lτ = max(τ ⋅ e, (τ − 1) ⋅ e), (1)

e = y − ŷ, (2)

LCQ =
1
N
∑
N

n=1
Lτn, (3)

where L denotes the loss, τ represents the quantiles, e signifies the quantile forecast error, with y being the
observed value and ŷ the quantile forecast. LCQ is the combined quantile loss function applied to the neural
network to train all N quantiles simultaneously.

Forecasting performance of themodels is evaluated based on theMeanAbsoluteError (MAE) of the expected value
of the forecast (50th percentile), the discrete approximation of the Continuous Ranked Probability Score (CRSP),
and the Prediction Interval Confidence Percentage (PICP) of the 80% prediction interval, and the Prediction In-
terval Normalized Average Width (PINAW) of the 80% prediction interval. These metrics are defined as.

MAE(y, ŷ) =
1
N
∑
N

i=1
| y − ŷ|, (4)

CRPS(y, ŷ) =
1
N
∑
τ∈T

max( τ ⋅ ( ŷτ − y), (τ − 1) ⋅ ( ŷτ − y)), (5)
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PICPτ0:τ1(y, ŷ) =
1
N
∑
N

i=1
1ŷτ0 ≤ y≤ ŷτ1

, (6)

PINAWτ0:τ1(y, ŷ) =
ŷτ1 − ŷτ0

ymax − ymin
, (7)

where y is the observation, ŷ the expected value of the quantile forecast, and ŷτ the τ‐quantile. TheMAE depicts an
image of the error of the expected value of the quantile forecast, the CRPS (continuous ranked probability score)
is a combined weighted metric for the quantile‐errors, the PICP (prediction interval coverage percentage) shows
the amount of observations that feel within a predefined prediction interval (PI) (e.g., the 80% PI should cover
80% of the observations), and the PINAW (prediction interval normalized average width) depicts the normalized
width of a predefined PI. An ideal 80% PI should therefore have a low PINAW but a PICP of exactly 80%.

3.2. Combined Feature and Hyperparameter Optimization

For accurate and effective application of ML models it is necessary to optimize both the features applied in the
model and the hyperparameters of the model. The Tree Parzen Estimator (TPE) algorithm, which is a variant of

Figure 3. Structure of the CQRDNN showcasing separate quantile output nodes. Adopted from van der Heijden, Palensky, &
Abraham (2021).
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SequentialModel BasedOptimization, is capable of simultaneously optimizing both features and hyperparameters
(Bergstra et al., 2013; Lago et al., 2018; van der Heijden, Lago, et al., 2021). It allows for the construction of a
custom search space with a large number of dimensions which can be either discrete, continuous, or a combination.

The TPE employs Bayes' rule to create a surrogate model. The primary differentiator here is how the TPE
segments the search space by evaluating the likelihood of the observed loss being above or below a threshold,
typically denoted as y∗. In this work, we apply the TPE to optimize the features and hyperparameters of our
CQRDNNs, where the loss being optimized for is the combined pinball loss function.

This surrogate model describes the probability of the loss being higher (h(x)) or lower (l(x)) than a specified
threshold value (y∗) as a function of the search space instantiation:

p( y|x) =
p(x| y) ⋅ p(y)

p(x)
, (8)

In the above equation, y represents the model performance, and x denotes a search space instantiation.

Consequently, the model performance is estimated based on the features and hyperparameters, where p(x| y) is
defined as

p(x| y) = {
l(x) if y< y ∗

h(x) if y≥ y ∗.
(9)

Within the TPE algorithm, samples are drawn from both l(x) and h(x), after which the ratio l(x)
h(x) is evaluated for all

samples. The next suggested candidate is the one with the highest expected improvement, that is, the candidate
with the largest ratio between low and high probabilities in l(x) and h(x), respectively. In our case, we apply the
combined pinball loss function (Equation 3).

To optimize the CQRDNN for forecasting pumped discharge by the four local water authorities, as well as the sea
water level of the North Sea and Day Ahead Market (DAM) electricity prices, we apply the same hyperparameter
search space for all modeling tasks while adjusting the feature search space. Details of the feature and hyper-
parameter search spaces are provided in Table C1. Model selection is based on the combined pinball loss
(Equation 3) and an independent validation data set. All results presented in this manuscript are derived from
independent test data sets. For the DAM, the model is retrained weekly to adapt to the rapidly changing market
dynamics.

For pumped discharge modeling, data from early 2014 to January 2021 was used, with the period from 2019 to
2021 serving as the test set, 2016 as the validation set for feature and hyperparameter optimization, and the
remaining years for training. The validation year was chosen based on preliminary analysis to represent an
average year in terms of discharge rates. In essence, the CQRDNN is trained to model a rainfall‐runoff system
influenced by human interventions through pump control. To achieve this, we optimize a ’rolling window’
approach by summing fluxes over a variable window length (rolling window size in Table C1) and selecting
features such as precipitation and evaporation through a binary search space. For waterboards Rijnland and
HHNK, we also include sea water level and wind as optional features, as these influence direct discharge to the
North Sea. This approach works best for the waterboard Waternet, possibly due to the relatively low amount of
storage present in the Waternet system. The NZK‐ARK is used as a drainage canal (in Dutch: ’boezem’), where
most waterboards have an intermediate drainage canal with higher storage capacity. This could make Waternet's
system less influenced by human behavior. In the case of Rijnland, the main pumping stations are not variable
speed pumps, leading to discrete pump modes that CQRDNN regression seems to have difficulties with. It could
also indicate that pump scheduling can't be forecast based on the current feature data only, leading to high upper
quantiles due to the inability to time the actual pumping.

The Day Ahead price forecasting model is based on the methodology presented in (van der Heijden, Palensky, &
Abraham, 2021), and we had access to data from 2015 onward. The search space, however, was expanded to
include renewable energy data. Due to the unstable markets during the time of simulation, the model was retrained
on a weekly basis to be able to learn from the most recent data.
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3.3. Scenario Generation

To assess decision‐making processes in uncertain environments, generating operational scenarios is essential. The
Non‐Parametric Bayesian Network (NPBN) approach is useful here. It employs univariate parametric distribu-
tions based on quantiles from the CQRDNN to depict the marginal distributions of the variable at a timestep,
while bi‐variate copulae are used to model temporal dependencies as observed in the data. Particularly, in the
NPBN, Gaussian copulas are used (In previous literature, Non‐Parametric Bayesian Networks are sometimes
referred to “Gaussian copula‐based” Bayesian Networks (GCBN)) due to their ability to effectively handle a large
number of variables by simplifying the process of joint distribution sampling (Mendoza‐Lugo & Morales‐
Nápoles, 2024). This feature makes NPBN effective for scenario generation (van der Heijden, Palensky,
et al., 2022) with scenarios that obey both the forecast marginal distribution and the observed auto‐correlation. In
this work, we apply NPBNs to sample scenarios containing multiple time steps of incoming waterboard
discharge, the water level of the North Sea, and the DAM and IDM electricity prices.

In NPBNs, multivariate distributions are characterized by univariate marginals and a copula to represent the
dependencies. The joint density of an NPBN with n variables is factorized as:

f1,… ,n (x1,… ,xn) = f1 (x1)∏
n

i=2
fi|Pa(i) (xi|xPa(i)), (10)

here, f1,… ,n denotes the joint density of the n variables, fi represents the marginal distribution of each variable, and
fi| j represents the conditional distributions. Each random variable xi is associated with a node i, and the parent
nodes of node i form the set Pa(i) = i1,… , ip(i). The arcs in the NPBN are assigned one‐parameter conditional
copulas (Joe, 1997), parameterized by Spearman's rank correlations (Hanea et al., 2015). The arc from the parent
node im to node i is assigned a conditional rank correlation.

In order to generate scenarios with realistic temporal dependency, we first fit parametric distributions, as available
in the Scipy (Virtanen et al., 2020) python package, on the quantile forecasts, to be used in an NPBN with pre‐
defined structure as depicted in Figure 4a. For all variables that are forecast using the CQRDNN, we apply the
same BN structure.

Forecasting electricity prices on the IDM requires renewable energy production data that is updated during the
day. ENTSO‐E's open database ENTSO‐E (2018) is of insufficient quality to accurately model the IDM.
Therefore, we model IDM price uncertainty using an NPBN that conditionalizes the IDM price to the DAM price
and already observed IDM prices, as depicted in Figure 4b. We use the distributions of the relative ID3 price (e.g.,
ID3
DAM) to model and infer IDM prices.

3.4. Scenario Reduction

While generating a set of scenarios that fully describes the uncertainty space is invaluable, it is equally valuable to
have a practical size, especially in simulation and optimization contexts where computational resources are
constrained. Hence, it is beneficial to distil the original scenario set into an optimal subset with statistical
properties that best approximates the properties of the original set. The criterion we use for this selection is the
“minimal energy distance” between the reduced set and the original set of scenarios. The energy distance was
applied since it tends to show better statistical approximation properties than the more widely used Wasserstein
distance (Ziel, 2020).

Figure 4. Non‐parametric Bayesian Network structures for uncertainty modeling of panel (a) Day Ahead Market prices, incoming discharge, and the water level of the
North Sea (adopted from van der Heijden, Palensky, et al. (2022)), and (b) Intraday market prices. Ni represents the i‐th hour forecast lead time, DAi and IDi represent
the DAM and IDM prices for the i‐th hour of the day.
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The energy distance quantifies the dissimilarity between two distributions. This metric describes the distances
between the elements of X and X∗, and then corrects these with the distances found between members within X
and X∗ themselves (Székely & Rizzo, 2013; Ziel, 2020).

Mathematically, the energy distance is formulated as.

Ep (X,X∗) = 2∑
i∈I

∑
j∈I∗

pip∗
j d

p
ij − ∑

i∈I
∑
j∈I

pipjd
p
ij − ∑

i∈I∗
∑
j∈I∗

p∗
i p

∗
j d

p
ij, (11)

dpij = |xi − xj|
p, (12)

where X denotes the original scenario set with index set I, and scenarios (time series set elements) xi for i ∈ I
with respective probabilities pi. X∗ denotes the considered subset with index set I∗ ⊂I, with corresponding
scenarios x∗, and probabilities p∗. The term dpij denotes the p‐norm distance between two scenarios, with p = 1
being our choice for this study. Since the primary set (X) remains unaltered when during scenario selection, the
middle term is often neglected. This revised metric is termed the Energy Score. Probabilities p∗ of X∗ can be
optimized for the minimal Energy Score relative to X using the quadratic program

p ∗ = arg min
p∗

Ep (X,X∗),

s.t.∑ p ∗ = 1.
(13)

To select an optimal subset X∗ (i.e., the subset for which the chosen distance metric is minimal), we can
compute the Energy distances for all potential subsets where |I| = N. This method works for small scenario
sets but becomes impractical for larger sets. The forward selection algorithm (Growe‐Kuska et al., 2003) was
suggested to greedily append scenarios to the subset X∗ until the required subset size is attained. This approach
is detailed in Algorithm 1, accompanied by an illustrative example founded on the Bernoulli walk, presented in
Figure A1.

To represent the uncertainty space sufficiently, we sample 1,000 time series from the BN for each variable. This
number was selected a posteriori based on a trade‐off between the optimization problem's computational feasi-
bility and the uncertainty representation's completeness.

Algorithm 1. Forward Selection(X, I, N)
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3.5. Scenario Tree Reduction

Building on the concept of scenario reduction, scenario trees further simplify the task by offering a structured
representation. The core principle here is to model the inherent growth of uncertainty over forecast horizons. To
transition from scenario subsets to tree representations, we utilize a method inspired by Growe‐Kuska
et al. (2003). However, we search for the optimal tree shape and use the energy distance (Ziel, 2020) instead
of the wasserstein distance to calculate distances. The subsequent trees model the progression of uncertainty over
time, as depicted in Figure A2.

The Backward Tree Reduction method depicted in Figure A2, while effective, has its limitations. It relies on
predefined parameters like node locations (Φ) and the maximum children count per node (Θ), while fixing these
parameters can yield suboptimal trees. To circumvent this limitation, a Genetic Algorithm (GA) is introduced to
dynamically adjust these parameters in order to optimize tree structures for a given scenario set by solving the
optimization problem

Φ ∗,Θ ∗ = arg min
Φ,Θ

Distance( X̃,X∗)

s.t.∑
x∈X̃

|x|
N ⋅H

(14)

where we solve optimal split locations (Φ∗) and amount of nodes (Θ∗) by minimizing the distance between tree X̃
and original subset X∗. We define tree complexity as the number of time‐discretized variables necessary to
describe the scenario set (i.e., the sum of the length of all sub‐scenario time series in each node of the tree), and
constrain the tree complexity to a fraction, β, of the original complexity defined by subset size N and time series
length H. In this work, we apply a β value of 0.5 to constraint tree complexity reduction with a minimum of 50%,
which was selected a posteriori based on the speed at which the GA could find feasible solutions.

4. Risk‐Aware Optimal Control
In this section, we describe the control model and methods that we propose to optimize the gate and pump
schedule for IJmuiden with regard for uncertainty. We start with an introduction to stochastic MPC and our
justification for the use of ER constraints (Section 4.1), continued by the water system constraints (Section 4.2)
and the multi‐market trading objective (Section 4.3). In our internal model, we have the pump‐ and gate discharge
from IJmuiden (qp, qg) as decision variables, the water‐level of the North Sea (hnzk) as system state, two binary
auxiliary variables (zp, zg) to indicate pump‐ and gate discharge possibility, and an auxiliary variable is used as
slack variable for water level constraint violations (zwl). Similarly, an auxiliary variable (H) is used to transform
the quadratic‐linear term in the energy consumption (Equation 24) of the pumping station to a bilinear term. A
detailed overview of the control variables can be found in Appendix B1, and the full MPC control problem is
formulated in Appendix B2.

4.1. Conditional‐Value‐at‐Risk Constraints

Stochastic MPC is a powerful extension to Deterministic MPC for control problems in the presence of un-
certainties (Mesbah, 2016). It leverages mathematical optimization to make optimal control decisions based on
probabilistic information about system dynamics and disturbances. The key idea behind stochastic MPC is to
formulate the control problem as a stochastic optimization problem, where the objective is to find a control
policy that minimizes an expected cost while considering the constraints and uncertainties in the system. In
addition to handling uncertainties in a single time step, stochastic MPC can be extended to multi‐stage sce-
narios, where the uncertainty evolves over the prediction horizon. This extension enables the controller to make
decisions that take into account the changing nature of uncertainties over time. By making use of real‐time
updated information and probabilistic forecasts in the optimization, stochastic MPC can help water systems
cope with changes in the climate or catchment, and mitigate impacts of extreme hydrological events (Castelletti
et al., 2008).

Robust optimization techniques play a significant role in stochastic MPC by addressing uncertainties and
maintaining system performance under worst‐case scenarios. Scenario‐robust optimization aims to find control
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policies that can withstand uncertainties by optimizing over a range of possible scenarios or uncertainty re-
alizations. By considering the most unfavorable outcomes in the scenario set, scenario‐robust optimization
provides assurances regarding system stability and performance, even when uncertainties deviate from their
nominal distributions. In stochastic MPC, scenario‐robust optimization techniques are integrated into the opti-
mization framework, enabling controllers to account for uncertainties while minimizing the potential impact of
worst‐case scenarios on system behavior. By explicitly considering worst‐case scenarios and their associated
constraints or objectives, scenario‐robust optimization provides a reliable control framework. This approach is
particularly valuable in safety‐critical systems or applications where deviations from nominal conditions can have
severe consequences, such as the NZK‐ARK where constraint violation can lead to flooding.

Robustness in MPC can extend to both constraints and objectives. In scenario‐robust constraint formulation,
constraint violation will not be tolerated in the whole range of uncertainty realizations. Scenario‐robust opti-
mization ensures that the system remains within predefined safety bounds under all considered scenarios,
providing a reliable control strategy. Although in most cases, subjecting to constraints even in the most unlikely
considered scenarios can be considered conservative. The authors hypothesize that this robustness in control has a
price when put in context of DR.

We propose the use of CVaR‐inspired constraints for managing risk by controlled relaxing of robustness in
decision‐making, while minimizing the expected value of the energy cost by trading over multiple markets.
Unlike traditional measures like chance constraints that focus solely on a probability threshold or variance
constraints that constrain a variance around the expectation, CVaR considers the size of the tail of the distribution
beyond the threshold. By capturing the tail of the risk, CVaR provides a more comprehensive measure of the risk
associated with the system's outcomes while being the tightest convex approximation of the chance constraint
(Venkatasubramanian et al., 2020). The constraint can be formulated as a linear constraint with a slack variable,
while being a coherent risk measure (Conejo et al., 2010). Consider the optimization problem.

min
x
E[C(x,W)] (15)

s.t. CVaRα[C(x,W)], (16)

where x represents the control variable, and W represents the set of possible uncertainty realizations. The cost
function C(x,W) captures the system's cost under control variable x and uncertainty setW. The CVaRα constraint
ensures that the Conditional Value at Risk of the cost function remains below a certain threshold γ with confi-
dence level α. This constraint can be discretely approximated by introducing a slack variable and two linear
constraints (Krokhmal et al., 2003)

ζ + (1 − α)− 1 ∑
w∈W

p[w] ⋅ z[w]≤ γ, (17)

z[w]≥C[x,w] − ζ ∀ w∈W, (18)

where ζ represents the VaR, α the confidence level, w an uncertainty realization in setW with probability set p, γ
the CVaR upper bound, C the cost function, and z the newly introduced slack variable representing the cost
exceeding the VaR.

Operational water resources management, however, generally requires the risk measure to reflect the risk of water
level bound exceedance and, therefore, the tail should be calculated with respect to a fixed threshold. As a fixed
threshold would not always equal the VaR, we call this reformulation Exceedance Risk (ER) constraints. This
constraint imposes a limit on the risk associated with the constraint violation (i.e., violation of the upper bound on
the water level in the canal), ensuring that the system operates within acceptable bounds with confidence level α.
By incorporating ERα constraints, the optimization algorithm ensures that the system satisfies the constraint with
predefined statistical confidence. As γ approaches the threshold and α approaches 1, the constraint converges
toward a scenario‐robust constraint where no constraint violation is allowed in any of the considered uncertainty
realizations.
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4.2. Water System Constraints

In this section, we describe the constraint formulation of the stochastic MPC based on the already published
deterministic model (van der Heijden, Lugt, et al., 2022). The constraints describe the water balance on the linear
reservoir model(Equation 19a), and constraints on gate discharge formulated as big‐M constraints (Equations 19c,
19d) using binary indicator variable zg, which is 1 when the gate discharge is actuated, and gate discharge curve
(Equation 19e). The physical constraints for pump discharge are similarly formulated with big‐M constraints
(Equations 19f, 19g) using binary indicator variable zp and the pump discharge curve (Equation 19h), the lower
bound constraint on the water level (Equation 19i), and a quadratic constraint on a new variable to make the pump
energy use in the objective bi‐linear (Equation 19j).

hnzk[t,w] = hnzk[t − 1,w] + (qin[t − 1,w]

− qg[t − 1,w] − qp[t − 1,w]) ⋅
Δt
Anzk

∀ t∈ T and w∈Wq×h,
(19a)

dh[t,w]≔ hnzk[t,w] − hNS[t,w], (19b)

dh[t,w] − dh−g + (1 − zg[t,w]) ⋅Mg ≥ 0 ∀ t∈T and w∈Wq×h, (19c)

dh[t,w] − dh−g − zg[t,w] ⋅Mg ≤ 0 ∀ t∈T and w∈Wq×h, (19d)

qg[t,w] ≤ (ag ⋅ dh[t,w] + bg) ⋅ zg[t,w] ∀ t∈ T and w∈Wq×h, (19e)

− dh[t,w] − dh−p + (1 − zp[t,w]) ⋅Mp ≥ 0 ∀ t∈T and w∈Wq×h, (19f)

− dh[t,w] − dh−p − zp[t,w] ⋅Mp ≤ 0 ∀ t∈ T and w∈Wq×h, (19g)

qp[t,w]≤ zp[t,w] ⋅ ∑
6

i=1
(ap[i] ⋅ − dh[t,w] + bp[i]) ∀ t∈ T and w∈Wq×h, (19h)

hnzk[t,w]≥ h− ∀ t∈ T and w∈Wq×h, (19i)

H[t,w] = (hNS[t − 1,w] − hnzk[t − 1,w])2 ∀ t∈T and w∈Wq×h, (19j)

with time steps t ∈ [0,T], prediction horizon T, sea water level uncertainty realization set Wh, incoming
discharge uncertainty realization setWq, their exhaustively combined setWq× h = (Wq × Wh) , the water level
of the NZK‐ARK hwnzk,t with probabilities pq ⋅ ph, the outgoing gate discharge scenarios qwg,t with probabilities
pq ⋅ ph, the outgoing pump discharge scenarios qwp,t with probabilities pq ⋅ ph, incoming discharge scenarios
qwin,t ∈ Wq with probabilities pq, and the North Sea water level scenarios hwt ∈ Wh with probabilities ph.

The upper bound constraint on the water level is formulated as a ERα constraint (Equations 20a and 20b) or as
scenario‐robust constraint (Equation 21). The ERα constraints are formulated to represent the expectation of the
water level exceeding the given bound; we formulate linear ER constraints inspired by the CVaR formulation
proposed in Krokhmal et al. (2003), described in Equations 17 and 18. By introducing slack variable zwl ∈ [0,∞)

for all scenarios and time steps, the constraint can be efficiently formulated as.

h+ + (1 − α)− 1 ⋅ ∑
w∈W∗

zwl[t,w] ⋅ p[w]≤ γ ∀ t∈ T, (20a)

zwl[t,w]≥ hnzk[t,w] − h+ ∀ t∈ T and w∈Wq×h, (20b)

where h+ is the water level threshold after which we consider violations for which we use the currently applied
target water level (− 0.4 m + NAP), zwl is the slack variable measuring the upper bound violation of the water
level in the NZK for each uncertainty realization w and timestep t ∈ T, α the confidence level, and γ the upper
bound on the acceptable ERα expressed in water level of the NZK (m + NAP) (i.e., the expectation of the
scenarios that violate h+ with confidence level α).
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In this formulation, the slack variable zwl represents the water level exceedance of a scenario and timestep with
respect to h+. The sum of the probability‐weighted exceedances over all scenarios is the expected water level
violation at each timestep, making the formulation a discrete approximation of the conditional expectation of
water level bound violation, given that the water level in that scenario is higher than h+.

As α approaches 1, the ER constraint becomes stricter, and the allowable exceedance above h+ approaches zero.
This means the expectation of violations becomes tighter and increasingly constrained The constraints in
Equation 20 become scenario‐robust (i.e., allow no constraint violation in any of the considered uncertainty
realizations) and are reformulated as

hnzk[t,w]≤ h+ ∀ t∈ T and w∈Wq×h, (21)

where h+ is applied as upper bound constraint on the water level over all timesteps, taking all uncertainty re-
alizations into considerations. The continuous decision‐variables in this problem are water level hnzk, gate
discharge qg, pumped discharge qp, slack variable describing water level violations zwl and the quadratic pump
headH. Two binary variables, zg and zp are present to describe pump‐ and gate opportunities due to the water level
variations between the NZK‐ARK and the North Sea.

4.3. Multi‐Market Trading Objective

To create a cost‐effective pump schedule, we minimize the expected energy cost over all possible control actions
under the combined uncertainty of waterboard discharge, North Sea water level, and possible Intraday and Day
Ahead market prices.

JIDM ≔ min
qg,qp
E
⃒
⃒ΔEt,w1

cID [t,w2]
⃒
⃒, ∀ t∈ TIDM , w1 ∈Wq×h, w2 ∈Widm|dam, (22)

JDAM ≔ min
qg ,qp

E
⃒
⃒Et,w1

cDA [t,w3]
⃒
⃒, ∀ t∈ TDAM, w1 ∈Wq×h, w3 ∈Wdam, (23)

where.

Et,w ≔ apqp[t,w]2 + bpH[t,w]qp[t,w] + cpqp[t,w] − dh[t,w]Δt, (24)

ΔEt,w ≔ Et,w − Ebidt , (25)

Ebidt ≔ Ew|Et,w|, (26)

with the set of possible DAM price realizations Wdam and the set of possible intraday price realizations that is
conditioned on the observed DAM prices of that day Widm|dam. The variable ΔEt,w1

represents the difference
between the actual energy used at the time of a given scenario Et,w1

and the energy bought on the Day Ahead
Market Ebidt , where the bid is fixed to the expected energy use for a given hour. It is used with the intraday price
cIDt,w2

for intraday trading via the expected cost in JIDM. The energy consumption Et,w1
and the Day Ahead price

cDAt,w2
are used for day‐ahead trading in JDAM.

In our closed‐loop simulation framework, we solve a single optimization problem over a rolling 48‐hr control
horizon at each decision step. The objective incorporates both JDAM and JIDM, reflecting the need to continuously
prepare for future Day Ahead bids while managing ongoing Intraday adjustments.

• Continuous DAM preparation:At any given simulation time, we consider a 48‐hr horizon that extends beyond
the next Day Ahead bidding moment. The JDAM objective is thus always active, guiding the selection of a
baseline energy purchase schedule for the upcoming day. This ensures that we continuously prepare for the
next DAM bid, even if it occurs several hours into the future.

• At the DAM bidding hour (e.g., 11:00):When the DAM bidding moment arrives, we finalize the Day Ahead
bid based on the decisions formed in the previous optimization step. This action fixes Ebidt for the next 24‐hr
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period (from 00:00 to 23:00 of the following day) by bidding the expected energy use over all scenarios. With
this bid established, we have a clear reference against which to measure Intraday deviations.

• Intraday adjustments after the DAM bid: Once the DAM bid is set at 11:00 and Ebidt is fixed, JIDM becomes
relevant for the next day's hours to correct deviations from the fixed DAM schedule. As time progresses and
the horizon rolls forward, the DAM bid that was just made remains fixed, while the optimization problem
continues to consider both JDAM for future bids and JIDM for current‐day Intraday trading. This leads to a
shrinking Intraday adjustment window until the next DAM bidding opportunity arrives, at which point a new
baseline can be established and the cycle repeats.

5. Results and Discussion
In this section, we describe the results of the proposed framework applied to the case study area; the NZK‐ARK.
We simulate historical multi‐market participation with the real water system and electricity price data, where the
optimal control of the NZK–ARK system is simulated under uncertainty in a receding horizon fashion over
multiple years and months. We first describe the probabilistic forecasting of incoming discharge from four local
water authorities into the canal, the water level of the North Sea, and the DAM prices using the methodology
described in Sections 3.1 and 3.2. We then describe how scenarios are generated and reduced to optimal subsets
using the method described in Sections 3.3, 3.4 and 3.5. Finally, we perform closed‐loop simulations for several
months in 2019, 2020, and 2021 in Section 5.3. We analyze the difference between the deterministic (perfect
forecasts and deterministic ’point’ forecast), and stochastic MPC. We vary the stochastic MPC with different
numbers of scenarios and risk‐acceptance settings, including ER and scenario‐robust constraints. Figure 5 depicts
the workflow that is applied in this manuscript. It describes the steps that are taken to model operational un-
certainty in each source, and what study is performed to evaluate performance.

5.1. Probabilistic Forecasting and Scenario Generation

Figure 6a shows example operational forecasts for the considered sources of uncertainty.

The model forecasting the water level of the North Sea seems to perform well in stable conditions. A model was
trained with perfect foresight for the wind forecast since historic meteorological forecasts are not easily acces-
sible, and fully optimizing for the best model is out of the scope of this work. For the North Sea water level model,
we used 2016 and 2017 data as training set, 2018 data as validation set, and 2019–2021 as test set.

Figure 5. The applied workflow in this manuscript, describing what steps were taking to model operational uncertainty for each variable.
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Figure 6. Operational forecast examples (a) discharge from the four local water authorities (HHNK, Rijnland, HDSR, and Waternet), the water level of the North Sea,
and the DAM electricity price. Performance metrics of the forecasting models (b), where the metrics are averaged over the 48 hr forecast lead times for all years in the
receding horizon simulation. Performance metrics over the lead time (c) per year in the test set. The water levels are shown in m+NAP, which is the standard reference
for water levels in the Netherlands, equivalent to Amsterdam Ordnance Datum.
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Figure 6b shows some averaged performance metrics over the lead time of the models. The CRPS shows the
Continuous Ranked Probability Score, which is a combined score for all quantiles in the forecast and is expressed
in the unit of the forecast variable. The MAE is the Mean Absolute Error calculated with the 50th percentile of the
forecasts. The PICp80 stands for the Prediction Interval Coverage Percentage at the 80% confidence interval,
representing how many observations were between the 90th and 10th percentile. The PINAW80 stands for
Prediction Interval Normalized Average Width at the 80% confidence interval. Some models show some per-
formance decrease over the length of the test sets, which would be especially visible in the decrease of PICP and
therefore the validity of confidence intervals.

The models could be optimized further in order to improve performance but seem to perform well on average.
Every model can be optimized for performance, especially if performance evaluation is purely metric‐based. We
test model goodness based on operational performance, to be measured in constraint violation and energy cost ‐
compared to perfect foresight. In this work, we focus on the probabilistic control framework and closed‐loop
simulation testing; the aim is not the exhaustive optimization of each single model based on classical time‐
series forecast metrics.

All models show some overconfidence in the quantiles, having PICPs lower than 0.8, indicating too narrow
prediction intervals. The waterboard discharge model performance seem relatively stable, with a notable decrease
in PICP forWaternet. This can be explained by the fact that Waternet decides on their pumping schedule informed
by DAM prices, leading to more unpredictable behavior as prices become more volatile. The water level forecast
of the North Sea shows an increasing CRPS and MAE over the years, possibly indicating a lack of training data or
an in‐stationary environment. A severe decrease in accuracy can be seen for the DAM model in 2020 and 2021,
when the energy crisis was in effect. The MAE and CRPS increase, but the PICP shows the quantiles are less
valid. A high observed price spread can explain the decrease in PINAW. Every model can be optimized for
performance, especially if performance evaluation is purely metric‐based. We test model goodness based on
operational performance, measured in constraint violation and energy cost ‐ compared to perfect foresight. In this
work, we focus on the probabilistic control framework and closed‐loop simulation testing; the aim is not the
exhaustive optimization of each single model based on classical time‐series forecast metrics.

On each simulation time step, we apply the CQRDNN models to forecast quantiles, fit a distribution, and sample
scenarios with the NPBN approach (Section 3.3). After that, we apply Algorithm 1 to select an optimal subset with
new weights. To transform the scenario set into a fan, we cluster the root node to a single scenario. We select a
root node size of 3 hours, which corresponds with the time when the IDM has the most liquidity. To reduce
computational complexity, we also consider scenario trees. A scenario tree can significantly reduce the amount of
decision variables necessary to describe the optimization problem. We apply a GA as described in Section 3.5 to
reduce the selected subset to a scenario tree and constrain a minimum 50% reduction in tree complexity. Figure 7
shows an example reduced scenario subset, a scenario fan, and a scenario tree, for the water level of the North Sea.

5.2. Stochastic MPC

To investigate the effect of the variations in risk‐acceptance on the water level, we explore the output of theMPC's
internal model. Within the internal MPC model, there is a pump discharge, gate discharge, and water‐level de-
cision variable for each timestep and all scenario combinations. However, since we need a single implementable
output for control, a root node of 3h is maintained where the values of the energy‐distance optimal scenario are
used, leading to a deterministic pump‐ and gate schedule for the coming 3 hours.

Figure 7. The energy‐distance optimal scenario subset of size 10, and the constructed scenario fan and scenario tree with 50% complexity reduction for North Sea water
level at a single simulation timestep.
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Figure 8b shows the water level for a single control timestep of the simulation with receding horizon imple-
mentation. We can see how, as the ER α and γ change, the output water level changes, effectively translating ER
parameters into operational consequences.

5.3. Closed‐Loop Simulation Testing

We perform closed‐loop simulations of energy market participation for January, April, July, and October for 2019
and 2020, and January for the year 2021 (due to data availability) at hourly simulation and control time steps, with
a control horizon of 2 days. The months are simulated separately due to the framework's runtime resulting from
the computational demands of the optimization problem. The simulations were run on Snellius, the Dutch Na-
tional Supercomputer (Surf Cooperation, 2023), and a single month of simulation still took 22.5 hr to run on

Figure 8. (a) The MPC model input and output from the internal model with constraints that are robust toward the worst case in the reduced set, and (b) the output water
level from MPCs with different ER α and γ constraint settings and the same input. The water levels are shown in m + NAP, which is the standard reference for water
levels in the Netherlands, equivalent to Amsterdam Ordnance Datum.
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average. The MPC problem was solved using Gurobi (Gurobi Optimization, LLC, 2023) with the relative
MIPGap set to 0.01, the absolute MIPGap to €1, the NonConvex parameter set to 2, and a time limit of 15 min if a
solution was found, else the optimization would continue until the first feasible solution was found. An overview
of the control and simulation settings can be found in Appendix C2.

We perform a sensitivity analysis on the amount and shape of the scenarios, where we consider one (e.g., a
deterministic forecast with deterministic constraints), 3, and 5 scenarios per source of uncertainty in either an
ensemble with fan or tree shape, and where all scenarios are selected based on the energy distance subset selection
method described in Algorithm 1. We then compare a scenario‐robust approach with several ER settings
(α ∈ {0.99,0.9,0.8}, γ ∈ {− 0.395, − 0.3}), and we compare all simulated scenarios and energy costs with a
simulation using a deterministic perfect forecast. Figure 9 shows the relative yearly cost of the simulations of
market participation compared to the perfect forecast.

Figure 9 shows a clear value in a probabilistic approach compared to a deterministic (i.e., scenario‐robust with 1
scenario) approach, especially in 2019. All considered probabilistic approaches result in lower energy costs than
the deterministic approach. However, large variations in relative performance can be seen over the years. The
lowest performance increase was seen in 2020 when the COVID pandemic hit. One possible explanation is that
the difficulty of forecasting electricity prices increased in 2020 and 2021, leading to suboptimal operational
uncertainty estimation.

To better understand the observed variability in performance over the years, we compare the forecasting accuracy
of key variables using the CRPS and the PICP of the 80% prediction interval. Figure 6c presents the CRPS and
PICP for combined discharge, North Sea water levels, and DAM prices for the years 2019–2021. The results
indicate that forecasting performance for DAM prices deteriorated significantly in 2020, with a CRPS of 5.91 and
a PICP of 0.60, compared to 2019 (CRPS of 5.47, PICP of 0.74). This decline likely impacted the relative
performance of the stochastic methods, as accurate price forecasts are crucial for optimal DAM bidding strategies.
Interestingly, these results indicate that operational performance is more dependent on the correctness of the outer
quantiles (PICP of the 80% prediction interval) than the accuracy of all combined quantiles (CRPS).

In contrast, water level forecasts show relatively stable performance across all years, with PICP values consis-
tently close to the target. These results highlight the importance of forecasting accuracy for DAM prices, as their
variability is directly linked to the profitability of multi‐market trading. The difficulty of forecasting DAM prices
in 2020 and 2021 may explain the lower cost savings observed that year.

When comparing ER approaches with scenario‐robust approaches, the figure shows that, on average, ER ap-
proaches result in lower energy cost than scenario‐robust approaches. Less risk‐tolerant ER approaches seem to
performworse than the scenario‐robust approaches, which a lack of on‐time intraday trading could explain. As the
future probability of a high water level becomes more tolerable, the scenario will become more likely at some
point, activating the upper‐bound constraint. Suppose this happens too close to the execution time. In that case,
more energy has to be traded on the IDM since the DAM is already closed, limiting the economic potential of
multi‐market trading.

Figure 9. Relative yearly cost of the simulated months compared to the simulations with a perfect forecast. The left figure shows the relative cost for the simulations with
ER‐constrained water levels, while the right figure shows the relative cost of the simulations with scenario‐robust control. Scenario‐robust with one scenario is the same
as a deterministic problem and is depicted as “Det.”. Red indicates that the simulated costs were higher than the cost for the simulation with perfect forecasts, while blue
indicates the cost were lower.
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Increasing the size of the scenario set does not always lead to better results. When the MPC problem is hard to
solve, the optimal solution would not be reached within the cut‐off time. A more scarce scenario‐tree repre-
sentation, therefore, generally performs better with 5 scenarios. In 2021, which only consists of January, the
difference between a fan‐ or tree uncertainty representation is the largest. January 2021 was a wet month, with an
average simulation runtime for the 5‐scenario fan approach of 58hr, while the average simulation runtime for the
5‐scenario tree approach was 27hr. This is consistent with our hypothesis that time constraints can affect the
optimal scenario set size for uncertainty representation.

In one simulation with actual forecasts, we observe a lower cost than in the perfect forecast scenario. This can be
explained by a forecast error at advantageous time, leading to more intraday trading when IDM prices were
advantageous. Even with the perfect forecast, IDM prices are only known after DAM closure, leading to the
absence of speculation on IDM prices. This could lead to more profitable energy on the IDM, even though the
initial DAM bid was suboptimal. The portfolio could be further optimized if IDM and DAM prices were available
for the optimization problem at the same time. However, that would increase the complexity of the optimization
problem and might not be practically feasible using the same problem formulation.

In general, it can be seen that the benefits of the proposed stochastic method vary over the years. The year 2019,
when electricity prices were easiest to forecast, seemed to have the most optimal results with up to 44 p.p. cost
savings compared to the deterministic forecast, and even contained a simulation with lower cost than the perfect
forecast scenario. In 2020, when the COVID pandemic just started, the profitability of the proposed strategy
decreased, but the stochastic method still allows 10 p.p. cost savings compared to a deterministic approach. We
also see that the value of taking risks decreases in 2020, while that benefit is present in 2019 and 2021 when the
electricity markets were relatively calm compared to 2020.

Figure 10 shows the probability distributions of the observed water levels of the NZK‐ARK and a set of simulated
water levels. The figure shows that a deterministic forecast can lead to a sharp distribution around the target water
level. This is possibly caused by forecast inaccuracies, causing the control system to correct when water levels
rise. This is consistent with the higher energy cost since flexibility can't be exploited well. The difference between
scenario‐robust and ER constraints can be seen in the figure. While both strategies have a similar distribution
shape, ER constraints allow for a shift of the distribution and a slight flattening of the shape. When the complexity
of the problem is lower, it seems like there is slightly more constraint violation occurring, as depicted by the
distribution of the simulated water level with a tree‐shaped uncertainty representation. None of the strategies will
lead to a significant added risk compared with the observed water levels. Arguably, there can be a large difference
between modeled and actual water levels, but we believe the main conclusions stand. When comparing the
distributions with the regime depicted in Figure 1b, we conclude that a lot of flexibility is left unexploited and that
having less conservative control could well benefit both the energy transition as Rijkswaterstaat, the operator of
the IJmuiden pumping station.

6. Summary and Conclusions
This study has presented a framework for incorporating risk into the operational management of water resources,
focusing on the Netherlands' unique water management challenges. Our approach centered around the NZK–
ARK system and effectively integrates probabilistic forecasting and optimal control strategies in a real‐world
setting, integrating uncertainty from various sources.

Figure 10. Histogram and KDEs of the simulated and observed water levels in the NZK‐ARK. From left to right, the figure shows the distribution of the simulated water
level with an optimization using deterministic forecasts, scenario‐robust optimization with 5 scenario forecasts, three optimization problems with ER‐constrained water
level, and the observed water level in the NZK‐ARK. The water levels are shown in m + NAP, which is the standard reference for water levels in the Netherlands,
equivalent to Amsterdam Ordnance Datum.
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In our proposed framework, we apply a Combined Quantile Regression Deep Neural Network (CQRDNN) to
estimate operational uncertainty, while a Non‐Parametric Bayesian Network (BN) was applied to model auto‐
temporal relationships of forecast variables. Our methodology for scenario reduction, employing the Energy
distance metric, has shown that it is feasible to distil a comprehensive set of scenarios into an optimal subset,
while closed‐loop performance does seem be partially dependent on the number of scenarios in the subset.

By formulating Stochastic Model Predictive Control (MPC) with Exceedance Risk (ER) constraints, we provide
an advancement over traditional deterministic MPC approaches. ER constraints allow for nuanced risk man-
agement by modulating the control response based on the severity and likelihood of upper‐bound violations of
water levels. This novel approach not only manages risks more effectively but also provides a mechanism for
adjusting risk preferences dynamically, illustrated by our ability to warp and shift the distribution of the simulated
water levels as shown in Figure 10. Besides leading to a nuanced description of risk, the constraints are formulated
linearly, giving considerable computational advantages compared to integer programming.

We use ’historical simulations' with real water system and electricity market data to demonstrate the advantages
of multi‐market participation under uncertainty. The optimal control of the NZK–ARK system, simulated over
several years, revealed that stochastic MPC could yield substantial energy cost savings compared to deterministic
strategies. These savings highlighted the effectiveness of our approach in adapting to variabilities in climate and
market conditions, thereby providing a more resilient and economically efficient operational framework that can
potentially be applied in many fields. Furthermore, our results show the utility of employing larger scenario sets
for enhancing decision‐making optimality, although we noted the practical constraints of optimization under tight
time frames. The use of scenario trees are shown to be an effective strategy under these circumstances, facilitating
more manageable computations while minimizing compromising the quality of outcomes.

An important aspect of this study is its scalability and adaptability to other water management systems. The
computational complexity of the current formulation arises primarily from the complementarity constraints on
pump and gate discharge, modeled using a big‐M approach. These constraints are specific to the NZK‐ARK
system but may not be necessary for other canal systems, particularly in local or regional contexts within the
Netherlands, where a positive head can typically be assured. Without these constraints, the computational burden
is significantly reduced, making it feasible to scale the framework to larger networks of canals or systems with
delayed flows. The modular and flexible design of the framework also makes it suitable for application in other
domains, such as hydropower and reservoir management. These systems present different types of uncertainty
over longer relevant horizons, such as inflow variability or market dynamics, but future work could be directed at
tailoring the framework's underlying structure to address these challenges effectively. Additionally, we have
successfully applied a similar approach to battery energy storage systems (van der Heijden et al., 2023), further
demonstrating the framework's versatility and its potential for broader applications across diverse domains.

In examining water levels, our simulated results stayed within acceptable ranges, indicating the operational
viability of our approach. While there are observable differences between simulated and actual water levels, our
findings also show that adjusting the ER parameters effectively modifies risk profiles, offering avenues for further
refinement in future applications.

While this study did not explicitly benchmark the ML‐based probabilistic forecasts or the MPC approach against
alternative methods, this was a deliberate decision to maintain a focused scope. The goal was to validate the
framework as an integrated, modular approach for risk‐aware decision‐making. Benchmarking individual
components, such as the forecasting methods or control strategies, could provide additional insights but would
have significantly broadened the study's scope. Future research could address these comparisons, evaluating the
forecasts against ensemble weather models or assessing the MPC approach against other state‐of‐the‐art control
methods. The modular nature of the framework ensures that specific components can be benchmarked or replaced
without altering the overarching structure, allowing for continuous improvement and validation across different
contexts.

To conclude, this research advances the field of operational water resource management by delivering a robust,
adaptable, and economically viable framework capable of managing the uncertainty and variability inherent in
weather and electricity price conditions. This framework not only supports Rijkswaterstaat in optimizing energy
costs but also enhances the safety and reliability of water and energy systems. While our study focused on the
Dutch context, the methodologies and findings are applicable globally, offering valuable insights for regions
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facing similar challenges. The proposed methods also extend beyond water resources, possibly benefiting any
application facing similar uncertainty and risk.

Appendix A: Scenario Subset Selection Example: The Bernoulli Walk
A1. Scenario Reduction and Weight Redistribution

Figure A1

A2. Scenario Tree Reduction

Figure A2

Appendix B: Optimization Problem Details
B1. Overview of Control Variables

Table B1

Figure A1. Scenario reduction and weight redistribution of the Bernoulli walk using the Forward Selection algorithm and the
Energy distance metric.

Figure A2. Tree construction for the Bernoulli walk using the Energy distance.
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B2. Full MPC Control Problem

The full MPC control problem is defined below. With.

JIDM ≔ min
qg ,qp

E
⃒
⃒ΔEt,w1

cID [t,w2]
⃒
⃒, ∀ t∈ TIDM, w1 ∈Wq×h, w2 ∈Widm|dam, (B1)

JDAM ≔ min
qg ,qp

E
⃒
⃒Et,w1

cDA [t,w3]
⃒
⃒, ∀ t∈ TDAM, w1 ∈Wq×h, w3 ∈Wdam, (B2)

subject to.

hnzk[t,w] = hnzk[t − 1,w] + (qin[t − 1,w]

− qg[t − 1,w] − qp[t − 1,w]) ⋅
Δt
Anzk

∀ t∈ Tand w∈Wq×h,
(B3a)

dh[t,w]≔ hnzk[t,w] − hNS[t,w], (B3b)

dh[t,w] − dh−g + (1 − zg[t,w]) ⋅Mg ≥ 0 ∀ t∈ T and w∈Wq×h, (B3c)

dh[t,w] − dh−g − zg[t,w] ⋅Mg ≤ 0 ∀ t∈T and w∈Wq×h, (B3d)

qg[t,w] ≤ (ag ⋅ dh[t,w] + bg) ⋅ zg[t,w] ∀ t∈ T and w∈Wq×h, (B3e)

− dh[t,w] − dh−p + (1 − zp[t,w]) ⋅Mp ≥ 0 ∀ t∈ T and w∈Wq×h, (B3f)

− dh[t,w] − dh−p − zp[t,w] ⋅Mp ≤ 0 ∀ t∈T and w∈Wq×h, (B3g)

qp[t,w]≤ zp[t,w] ⋅ ∑
6

i=1
(ap[i] ⋅ − dh[t,w] + bp[i]) ∀ t∈ T and w∈Wq×h, (B3h)

hnzk[t,w]≥ h− ∀ t∈T and w∈Wq×h, (B3i)

H[t,w] = (hNS[t − 1,w] − hnzk[t − 1,w])2 ∀ t∈T and w∈Wq×h, (B3j)

h+ + (1 − α)− 1 ⋅ ∑
w∈W∗

zwl[t,w] ⋅ p[w]≤ γ ∀ t∈ T , (B3k)

zwl[t,w]≥ hnzk[t,w] − h+ ∀ t∈T and w∈Wq×h, (B3l)

where.

Et,w ≔ apqp[t,w]2 + bpH[t,w]qp[t,w] + cpqp[t,w] − dh[t,w]Δt, (B3m)

Table B1
Table With Control Variables, Units, Mathematical Notation, Variable Type, and Their Domains

Definition Unit of measurement Symbol Type Domain

Pump discharge m3 s− 1 qp Decision variable [0, 260]

Gate discharge m3 s− 1 qg Decision variable [0, 500]

NZK‐ARK water level m + NAP hnzk State variable [− 0.6, − 0.4]

Pump discharge indicator ‐ zp Auxiliary variable {0, 1}

Gate discharge indicator ‐ zg Auxiliary variable {0, 1}

Upper water level bound violation m zwl Auxiliary variable [0, 1]

Bilinear reformulation variable m2 H Auxiliary variable [0, 20]

Timestep size s Δt Constant 3,600
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ΔEt,w ≔ Et,w − Ebidt , (B3n)

Ebidt ≔ Ew|Et,w|, (B3o)

where decision variables, qg (gate discharge), qp (pump discharge), system state hnzk (water level of the NZK‐
ARK), and auxiliary variables zg (binary indicator for gate discharge opportunities), zp (binary indicator for pump
discharge opportunities), H (quadratic constraint for to make dh2‐term bi‐linear in the objective), and zwl (the
slack variable used for the ER constraint) are optimized to minimize the expected energy cost of pumping under
uncertainty.

Appendix C: Experiment Settings
C1. Feature and Hyperparameter Search Space

Table C1

C2. Simulation and Control Settings

Table C2

Table C2
Table With Simulation and Control Settings

Simulation settings Solver settings

Simulation length 9 × 1 month Solver Gurobi v10.0.0.2

Simulation timestep 1 hr Relative MIPGap 0.01

Control horizon 48 hr Absolute MIPGap €1

Control timestep 1 hr Feasibility tolerance 1e‐6

NonConvex parameter 2

Time limit 15 min

Solution limita 1
aSolution limit is only applied if a time out was reached while no feasible solution was found yet, forcing the optimization to
continue until a feasible solution was found.

Table C1
Feature and Hyperparameter Search Space Dimensions for the Optimization of the CQRDNN in Several Forecasting Tasks

Hyperparameters Waterboard discharge North sea water level Day ahead market price

N layers Discharge lag range Lagged water level range Lagged price range

Neurons per layer Lagged wind data range Lagged wind data range Include prices of d‐7

Dropout rate Rolling window size Rolling water level window size Load data

Regularization Include precipitation window Include hourly wind data Lagged load range

Batch normalization Include evaporation window Include 10 min wind data Include load of d‐7

Random seed Include temperature window Include wind direction data Include load forecast for targets

Include discharge window Include day of the year Include onshore wind generation data

Include wind forecast Include hour of the day Include offshore wind generation data

Include precipitation forecast Include solar generation data

Include sea water levela Market integration
aSea water level is only included in the feature search space for waterboards that have the option to discharge into the North Sea directly.
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Data Availability Statement
The data that was used for this work is available on van der Heijden (2024).
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