
The Illuminator: An Open Source Energy System
Integration Development Kit
Aihui Fu (A.Fu@tudelft.nl), Raghav Saini, Remko Koornneef,

Arjen van der Meer, Peter Palensky, Miloš Cvetković
Electrical Engineering, Mathematics & Computer Science

Delft University of Technology
The Netherlands

Abstract—This paper introduces a flexible and extendable easy-
to-use energy system integration development kit: the Illuminator.
The Illuminator illustrates challenges arising from the energy
transition. Hence, it is suitable in education and for demonstra-
tion. It also acts as a sandbox for testing new research concepts,
and particularly, distributed energy coordination algorithms in
real and non-real time. The Illuminator technology is primarely
a modular software platform developed to run on a Raspberry
Pi (RasPi) cluster. It is open-source, available at GitHub and
developed in Python. The Illuminator comprises models of
common energy technologies, such as photovoltaic (PV) panels,
wind turbines, batteries, and hydrogen systems. The uniqueness
of the Illuminator is in its modularity and flexibility to reconfigure
scenarios and cases on the fly, even by non-experts in a plug-and-
play fashion. This paper introduces the Illuminator and shows
its performance in a simple case study.

Index Terms—Energy system integration, open source, educa-
tion, energy transition, demonstration

I. INTRODUCTION

With the binding target of net zero greenhouse gas emissions
to achieve a climate-neutral Europe by 2050 [1], the energy
transition has become a central societal topic. Throughout
the energy transition our energy system grows in complexity,
becoming more intertwined and interdependent. Understand-
ing such complex systems calls for a new generation of
support tools for modeling, analysis and simulation. Such tools
would be able to demystify multi-energy design and opera-
tional aspects, and improve system integration by enhancing
communication amongst domain experts and stakeholders. In
this paper, we introduce a tool called Illuminator, particularly
developed for education and demonstration.

The energy system landscape is full of various tools de-
veloped over the years for various purposes that all can be
deployed to teach energy transition challenges and solutions
with various degree of success. The professional and academic
engineering tools, such as Digsilent PowerFactory [2], Mat-
power [3], PyPSA [4] or PandaPower [5] are developed to
teach highly skilled engineers (at MSc and PhD level) who
will one day use the same tools in their work environment.
These tools were not designed with education as their primary
focus and therefore, they lack flexibility and modularity to
create educational content outside of very specific engineering

The project is supported by Stichting 3E and the PowerWeb Institute.
Contact: illuminator@tudelft.nl

problems. Similar is the case with energy system optimization
models, whose learning curves are quite steep (for example
OSeMOSYS which focuses on the long-term integrated assess-
ment and energy planning of multi-carrier energy systems [6])
or tools with limited access to their internal algorithms (for
example Energy Hub Design Optimization tool [7]).

On the other end of the spectrum are the tools developed
with the primary purpose of education. Reference [8] provides
a learning tool in the field of the Internet of Energy through
web server applications based on a low-cost single-board
computer. Reference [9] and [10] provides educational setup
methods for power electronics. Even though these tools can
easily be used in a classroom they are not sufficiently modular
and flexible to cover a variety of challenges and solutions that
energy transition brings. The sheer complexity of the energy
transition makes such tools narrowly-focused.

Finally, there are tools whose scope and flexibility are better
suited for the diversity of questions at hand. A Decentral-
ized Energy Management Simulation Toolkit (DEMKit) [11]
provides a sandbox to test different optimization algorithms
for energy management while allowing hardware-in-the-loop
experiments. The laboratory test beds, such as [12] and [13]
can be reconfigured in different connectivity architectures,
emulating sometimes entire distribution grids. Such modular
and flexible approaches are an inspiration for the Illuminator.

In this paper, we introduce a do-it-yourself kit for education
and demonstration of the energy transition challenges and
solutions. The kit, which we name the Illuminator, is flexible
and modular, allowing for a variety of cases to be explored.
The kit is available on GitHub under the LGPL license [14].
The Illuminator comes with models, case studies and scenarios
to represent a variety of possible contexts relevant to the
energy transition.

The architecture of the Illuminator is presented in Section II.
The libraries of the Illuminator are introduced in Section III.
The Illuminator usage is explained in Section IV. An example
study showing the Illuminator performance is given in Sec-
tion V. Finally, we present the conclusions in Section VI.

II. ARCHITECTURE OF THE ILLUMINATOR

A. Design requirements

To address broad education and demonstration needs, the
most important design requirements of the Illuminator are:



1) represent common energy technologies and systems
2) table-top design
3) extendability
4) plug-and-play capability
5) easy on-the-fly reconfiguration of the examples
6) replicability
To achieve these design requirements, the Illuminator archi-

tecture is conceived based on Rasberry Pi (RasPi) technology
and Mosaik co-simulation framework. Raspberry Pis address
design requirements 2, 3 and 4. Mosaik addresses the design
requirements 3, 4 and 5, while design requirement 6 is ensured
by the open source nature of the project. In Section III we
describe how design requirement 1 is addressed. To better
address requirements 1, 3, 5 and 6, note that the Illuminator
is primarily a simulation tool which relies on information
exchange, in contrast to power hardware test-beds.

B. Hardware considerations

The hardware inter-connectivity of the Illuminator is shown
in Fig. 1. In our design, we have selected to interconnect
RasPis with Ethernet cables via a switch. This approach
was selected to ensure scaling to dozens of RasPis as it
handles communication and power supply via the same cable,
reducing the cabling required by the system while avoiding
WiFi connectivity issues. For smaller setups, with only a few
RasPis, WiFi and battery supported alternatives can be viable.
Two different variants of the Illuminator module are shown
in Fig. 2, one hosting 8 RasPis, another hosting 24 RasPis.
These modules can be connected together to scale up the setup
capacity.

PV
Load

Results
visualization

Configuration

Master RasPi 

Client RasPi Client RasPi Client RasPi 

PV simulator Residence simulator Wind turbine simulator

Network Switch

Fig. 1. The structure of the Illuminator

Each RasPi is supplied with its own SD card allowing
simultaneous booting of the entire setup. Even though RasPis
can be configured to use shared memory space, i.e. one SD
card, we have abandoned this approach as it requires sequential
access to the memory space, leading to unnecessary long boot
times for setups with dozens of RasPis.

In this architecture, one RasPi is defined as the leader RasPi
while the rest are the follower RasPis. The leader-follower
architecture has been chosen for several reasons. First, the co-
simulation framework Mosaik follows the same architecture

in order to keep track of the global time propagation of the
entire simulation channeling all the messages between RasPis
through one single central point. Second, the auxiliary func-
tionalities such as configuration, initialization, visualization,
logging, etc. can be more easily streamlined from and by the
leader.

Beside their table-top qualities, RasPis provide another
benefit, namely, an abundance of peripherals that can be used
to provide a more tangible feel to education and demonstration
activities. They also have a vivid community with strong
support.

Although RasPis have been taken as the target deployment
platform, the subsequent simulation platform described in
this paper is Python-based and can therefore be run on any
operating system that supports Python, albeit without the use
of exotic peripherals.

a) Iluminator hardware box b) Devices inside the box

Fig. 2. Two variants of the Illuminator module

C. Simulation platform

The Illuminator software platform is largely based on Mo-
saik. Mosaik [15] is a simulation tool to link simulators and/or
models together and to perform co-simulation. It synchronizes
the simulation process against a global time clock and man-
ages the data exchange between the simulators via a socket
connection. These two features make it a suitable orchestrator
for distributed simulations. In other words, Mosaik gives an
opportunity to:

• run simulations across a computing cluster (such as
several stringed RasPis),

• to independently develop models in any programming
language

• to use models already encapsulated within various simu-
lation tools.

In other words, Mosaik allows to blure the line between
a model and a simulator, integrating both into a unified
simulation environment. Mosaik is written in Python, and
hence, we choose Python as the development language for
creating the core libraries of the Illuminator.

The process of using and setting up the Illuminator is shown
in Fig. 3.

Configuring simulation runs, first requires specifying which
models will run and in which configuration (see next section
for details). Second, it must be specified which model will be
deployed on which RasPi. Note that more than one model can
run on a single RasPi since they are connected via socket



< / >

Show Results

Delpoyment

Analysis

Co-simulation 

Case & Scenario
configuration

Model selection
(Wind, PV, EV, load,...)

Study choice

Wind BatteryCommunity

PV

Fig. 3. The simulation process of the Illuminator

connections. The deployment of the models across RasPi
is achieved through the shell script (sh-file) via the leader
RasPi, leaving room for creation of an automated software
deployment architecture in the future.

Since the entire message exchange must pass through the
leader RasPi due to the simulation synchronization needs, it
is easy to setup monitoring and logging functionalities from
this node. User can select the model states to be monitored.
The states and the simulation results are stored as *.csv files,
while the Illuminator kit allows plotting data per simulation
step or, alternatively, at the end of simulation. The second
approach allows faster simulation times. WANDB [14] is used
as a dashboard for results visualization during the simulation
and to compare results of different simulation runs.

III. LIBRARIES OF THE ILLUMINATOR

In order to develop education and demonstration around the
Illuminator kit, we distribute several libraries for creation of
energy transition case studies. The Illuminator comes with:

• a library of models,
• a library of cases, and
• a library of scenarios.
The library of models contains the common power system

models including PV systems, wind turbines, electric vehicles,
households, etc. These models are combined into cases. We
provide several typical cases relevant for power and energy
systems, spanning from a household energy system to the na-
tional energy system. Finally, the library of scenarios contains
the relevant profiles of energy generation and consumption that
can be used to investigate the case under different scenarios.
The provided models are common and rather simplified aca-
demic models, but the open source nature of the Illuminator
gives possibilities to extend and enhance them. The models,

Hardware Platform

Model
*. py

Software Platform

Simulation

Study

Switch

RasPis

Case
*.xml

Scenario
*.csv

Library

Scenario
*.csv

Model
*. py

Case
*.xml

Fig. 4. The Illuminator concept

cases and scenarios are populated with typical parameters and
profiles giving a representative outlook of the energy system.

Most of the provided models are static models, comprised
of algebraic equations. They are snapshot models which are
stringed together into cases. The storage models differ. They
contain memory in terms of the State of Charge (SoC).

The Illuminator runs in real and non-real time. The time
step of the Illuminator is defined by the user in the whole
multiples of one second. Therefore, one second is the finest
resolution of the Illuminator kit.

At present, no specific ontology has been proposed for the
exchange of Illuminator messages. Typically, information that
is transmitted between models includes the input and output
power of the model interface, although other internal states
may also be shared. This can be useful when, for example,
one wishes to devise a control logic of the charging point to
react on the battery SoC. The definition of an ontology for
Illuminator messages remains an area for future research

IV. USING THE ILLUMINATOR

Before we explain how the Illuminator can be used, we first
introduce the notion of simulation and study. A combination of
a case and a scenario defines one simulation run. According to
this simulation run, the models are deployed and simulated. A
study comprises one or more simulation runs. Any phenomena
under investigation would be first captured in the notion
of study which would then be split into simulation runs
specifying desired cases and scenarios.

Although the cases are possible to define by directly mod-
ifying *.xml case files, the user also has an option to interact
more vividly with the Illuminator by drawing a configuration
diagram on a touch screen or a smart board, such as shown in
Fig 5. Based on the drawing, the Illuminator will automatically
assemble the case file. Assignment of the models to specific
RasPis in this maner will be enabled in the near future.

• Energy transition studies - As already explained in the
main motivation of our work, the Illuminator is intended
to capture the relevant challenges and solutions to the



Fig. 5. The Configuration diagram

energy transition, and therefore, the first domain of use
of the Illuminator is as a table-top replica of the en-
ergy system for education and demonstration purposes.
However, its design features allow two other interesting
applications.

• Sandbox for validation and verification - The Illuminator
can be used as a validation and verification platform
for newly developed coordination and control algorithms.
Python language, together with the distributed architec-
ture and an abundance of models, makes Illuminator
perfectly suitable as a sandbox for testing of algorithms,
in real and non-real time.

• Digital twin - Flexible nature and its ability to be easily
reconfigured and deployed, make the Illuminator suitable
to spawn a multitude of system variations in operational
policies and/or system configuration, in this way inform-
ing future design and operational decisions.

V. AN EXAMPLE STUDY

One trend to reduce energy bills and greenhouse gas emis-
sions is by forming self-sufficient energy communities. Having
sufficient renewable energy generation and storage could po-
tentially make the community self-sufficient. To manage the
energy flows, an energy management system (EMS) is needed.

Power

Power

Power

Power
Power

PowerSoc
Soc

H2

H2

PV

Wind

Battery

Electrolyser
Hydrogen storage

Feul cell

Household

Fig. 6. The schematic of the case

In this example study, we analyze one such system to
assess the feasibility of a self-sufficient community. This
study also shows the deployment of the Illuminator kit and

verifies its performance. The models used are those of a small
scale wind turbine, a rooftop PV system, a typical household
consumption, and storage assets. Within storage assets, we
model a fuel cell, a hydrogen storage tank and an electrolyser
as a long-term storage system, and a lithium-ion battery as
the short-term storage system. The schematic of this case is
shown in Fig. 6. We observe graphically that a controller
with the EMS is centrally positioned in this case as an energy
routing device. The scenario uses typical June profiles for the
consumed power of the households and the generated power
from PV and the wind turbine. These profiles are shown in
Fig. 7. The simulation time step is set to 15 minutes and one
month of system behavior is simulated.

June

1st June

Fig. 7. The Load and generated power from PV and wind in June

The EMS algorithm is deployed on the leader RasPi, while
the rest of the models are separately deployed in different
follower RasPis. The data flows between the models are
shown in Fig. 6. Based on the generated wind and solar
power, the consumed power of the household, and the state
of charge (Soc) of the storage assets, the EMS decides on the
(dis)charging rates for the storage assets. In this case, we use
simple EMS logic. If the battery has enough capacity to ensure
power balance, battery is used first. If battery does not have
enough capacity, then either the electrolyser or the fuel cell
are activated.

With the explained control logic, the (dis)charging power of
the battery is shown in Fig. 8. The power to the electrolyser
and from the fuel cell is shown in Fig. 9. The SoC changes are
shown in Fig. 10. From this figure, we see that the battery is
mainly used to balance the fluctuation of solar and wind in the
daily cycle. The hydrogen storage is mainly used to balance
seasonal variations. The battery is sized well to accommodate
almost entire daily variability.

The simulation on a RasPi cluster takes 1035 seconds. The
same simulation, if deployed on a desktop PC with Intel(R)
Xeon(R) W-2123 CPU @ 3.60GHz takes 493 seconds.

This is a simple case with a simple control logic that
illustrates how the Illuminator works. The developers can add
other models to the library, build their own control logic, link



the models in different configurations and change the time
step of the simulation. Each variation could lead to innovative
studies and insights.

June

1st June

Fig. 8. Battery charging (positive values) and discharging (negative values)
power in June

June

1st June

Fig. 9. Electrical power injection from the fuel cell and electrical power taken
by the electrolyser in June

VI. CONCLUSION

This paper presents a new kit for the education and demon-
stration of the energy transition challenges and solutions. We
explain the details of the Illuminator architecture and its use.
As an open-source, replicable, and scalable kit, the Illuminator
has multiple applications:

• Educate students and broader communities in energy
system operation and energy transition.

• Demonstrate the basic concepts of the system integration
of renewable energy and its implications.

• Test innovative algorithm by researchers and developers

REFERENCES

[1] Union, Europen, “O2050 long-term strategy,” 2020.

June

Battery
Hydrogen storage

1st June

Fig. 10. The SoC of the battery and the hydrogen storage in June

[2] PowerFactory, DIgSILENT, “Digsilent powerfactory 2021 user manual,
digsilent gmbh,” 2021.

[3] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on power systems,
vol. 26, no. 1, pp. 12–19, 2010.

[4] T. Brown, J. Hörsch, and D. Schlachtberger, “Pypsa: Python for power
system analysis,” arXiv preprint arXiv:1707.09913, 2017.

[5] L. Thurner, A. Scheidler, F. Schäfer, J.-H. Menke, J. Dollichon, F. Meier,
S. Meinecke, and M. Braun, “pandapower—an open-source python tool
for convenient modeling, analysis, and optimization of electric power
systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–
6521, 2018.

[6] T. Niet, A. Shivakumar, F. Gardumi, W. Usher, E. Williams, and
M. Howells, “Developing a community of practice around an open
source energy modelling tool,” Energy Strategy Reviews, vol. 35, p.
100650, 2021.

[7] M. Wirtz, P. Remmen, and D. Müller, “Ehdo: A free and open-source
webtool for designing and optimizing multi-energy systems based on
milp,” Computer Applications in Engineering Education, vol. 29, no. 5,
pp. 983–993, 2021.

[8] C. C. Capasso, D. A. Assante, and O. V. Veneri, “Internet of energy
training through remote laboratory demonstrator,” Technologies, vol. 7,
no. 3, 2019.

[9] M. Pajpach, O. Haffner, E. Kučera, and P. Drahoš, “Low-cost education
kit for teaching basic skills for industry 4.0 using deep-learning in
quality control tasks,” Electronics, vol. 11, no. 2, p. 230, 2022.

[10] P. van Duijsen, J. Woudstra, and P. van Willigenburg, “Educational setup
for power electronics and iot,” in 2018 19th international conference on
research and education in mechatronics (REM). IEEE, 2018, pp. 147–
152.

[11] G. Hoogsteen, J. L. Hurink, and G. J. M. Smit, “Demkit: a decentralized
energy management simulation and demonstration toolkit,” in 2019
IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe),
2019, pp. 1–5.

[12] V. Salehi, A. Mohamed, A. Mazloomzadeh, and O. A. Mohammed,
“Laboratory-based smart power system, part i: Design and system
development,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1394–
1404, 2012.

[13] J. M. Maza-Ortega, M. Barragán-Villarejo, F. de Paula Garcı́a-López,
J. Jiménez, J. M. Mauricio, L. Alvarado-Barrios, and A. Gómez-
Expósito, “A multi-platform lab for teaching and research in active
distribution networks,” IEEE Transactions on Power Systems, vol. 32,
no. 6, pp. 4861–4870, 2017.

[14] Illuminator-TUDelft-IEPG, “Illminator development kit,” 2022. [On-
line]. Available: https://github.com/Illuminator-TUDelft-IEPG/Illminator

[15] S. Schütte, S. Scherfke, and M. Tröschel, “Mosaik: A framework for
modular simulation of active components in smart grids,” in 2011 IEEE
First International Workshop on Smart Grid Modeling and Simulation
(SGMS). IEEE, 2011, pp. 55–60.


