
Anne Mai Ersdal
Department of Automation and Process Engineering
The Arctic University of Norway
Tromso, Norway
anne.mai.ersdal@uit.no

Martha N. Acosta
School of Mechanical and Electrical Engineering
Universidad Autónoma de Nuevo León
Nuevo León, México
martha.acostamnt@uanl.edu.mx

F. Gonzalez-Longatt
Department of Electrical engineering, Information Technology and Cybernetics
University of South-Eastern Norway
Porsgrunn, Norway
fglongatt@fglongatt.org

J.L. Rueda
Department of Electrical Sustainable Energy
Delft University of Technology (TU Delft)
Delft, Netherlands
J.L.RuedaTorres@tudelft.nl

P. Palenski
Department of Electrical Sustainable Energy
Delft University of Technology (TU Delft)
Delft, Netherlands

Abstract— Modern power systems are increasing the connection of power electronic converters (PECs), and new inertia-less technologies displace the synchronous generation units. Therefore, the total rotational system inertia is reduced, creating new problems related to the system frequency control and stability. Several mechanisms to enable the PECs with frequency sensible control loops have been proposed in the scientific literature. This paper considers the use of Fast-Acting Power Injections (FAPI), where the frequency-sensitive control uses a frequency-active power (f-P) based on proportional and derivative control. The FAPI is obtained from PECs installed in a Fast-Multi-Energy Storage System (F-MESS), it consists of a flywheel storage system and supercapacitor storage system. The objective is to assess the frequency support provided by an F-MESS considering low rotational inertia scenarios. One additional contribution is a full detailed model using a set of differential-algebraic equation (DAE) in order to ensure an appropriate representation of all devices at the time that ensure scalability of the model in order to include new PEC-based technologies. Simulation results demonstrate the positive effect of the use of FAPI controllers in F-MESS to provide frequency support in low inertia scenarios.

Keywords— Frequency Control, Low inertia, Multi-energy storage system, Nordic Power System.

I. INTRODUCTION

Modern power systems are evolving quite fast, and the new technologies for power generation and energy storage are helping to cope with the environmental need to reduce CO2 emission and stabilising a low carbon society [1]. On the other side of the power system, demand side, technical development, especially those related to the use of ICT, are making the demand more controllable, flexible and price sensitive [2], [3]. Independently of the side (generation or demand), one key element in the modern power system evolution is the massive use and deployment of power electronics converters (PECs) [4].

The design and the control of PECs for power systems applications have positively evolved in recent times, making the huge advances in many fields, including the improvement on the power quality footprints [5]. However, the integration of technologies based on PECs creates some problems, one of them is related to the progressive replacement of synchronous machines based generation unit by PECs-based technologies, as a consequence, there is an inherent reduction in the total system rotational inertia [4]. As the total physical rotational inertia provided by synchronous generators is reducing, the dynamic related to the frequency is becoming volatile, and negatively affecting the capacity of the power system to recover to system frequency disturbances [6].

The low value of total rotational inertia increases the likelihood of very fast electromechanical dynamics in the power systems arising the possibility of instability [7]. Consequently, the ability to overcome system frequency disturbances decrease based on a decreased inertial response with overwhelming consequences for system frequency security and reliability [8]. Several mechanisms to enable the PECs with frequency sensible control loops have been proposed, the main purpose of all of them is to produce an active power reference signal that is fed into the PECs when the frequency change of some limits or specifications. The set of controllers that follow that frequency-active power (f-P) control rule are defined in this paper as Fast-Acting Power Injections (FAPI) [9].

The fast-active power (FAP) controller is characterised by an extremely fast response (within 1 sec), with a very short time-delay (related to measurement rather than activation). The FAP controller is frequency sensitive controller, where proportional (K-f) and derivative (d/dt) control actions are considered together to mimic the inertia response [10]. As the inertia is reduced in the power system, the use of FAP controller with very fast energy systems looks like a promising solution to enhance the system frequency response (SFR). Several recent scientific papers have been dedicated to the use of an electrical energy storage system to provide FAPI and results of [1] demonstrate the suitability of the use of multi-energy storage system MESS to provide FAPI.

This research paper presents an assessment of the frequency support provided by fast-Multi-Energy Storage Systems (F-MESS) in considering decreased inertia scenarios. F-MESS is a combination of two very fast electrical energy storage system: supercapacitor and flywheel. The frequency-sensible controller used is based in a FAP controller considering the combination of proportional (K-f) and proportional-derivative (K_d/dt) control actions. Furthermore, the measurements of frequency deviation (Δf) are taken as reliable input for the FAP controller. Discussion
about system modelling is presented in Section II. Then, the frequency response model is used to assess the frequency support provided by the F-MESS, considering low inertia scenarios. Numerical results of time-domain simulations are used to assess the frequency support provided by the F-MESS. The assessment is based on main indicators of the SFR, and the FAPI, simulations results indicated the use of F-MESS can deliver very fast active power during the system frequency response and support the frequency, increasing the minimum frequency and enhancing the SFR. Beyond that, this paper contributes to the scientific community by presenting a full detailed model of the F-MESS.

II. SYSTEM FREQUENCY RESPONSE MODELLING

A. Power System Modelling including F-MESS

The SFR model has been enhanced by including the models of the F-MESS. Consider a large system in which most of the generating units are reheat steam turbine units. The idea of the SFR model is to reduce the power system to one described by a minimum number of equations that will compute only the average frequency behaviour. Typically the SFR model is represented in the form of a combination of block diagrams and transfer function as presented in [11]. However, it is required the full detailed model using a set of differential-algebraic equation (DAE) to ensure an appropriate representation of all devices at the time that ensure scalability of the model to include new PEC-based technologies. In this paper, the authors made an effort to include a frequency response model of F-MESS.

The power system is assumed to have three-control areas, $N=3$ (see Fig. 1). However, the reader might find it extremely easy to generalize and extend the modelling process to a generic number of control-areas. Three main elements constitute each control area: (i) a turbine-governor system together with a rotating mass and load, (ii) a Fast-Multi-energy Storage System (F-MESS) and (iii) inter-tie connecting the control area to the other areas inside the power system. Full detail of the dynamic models used in each element is presented in the next subsections.

B. Turbine-governor, rotating mass and load

The i-th control area in an N-control area power system is modelled using an equivalent model that lumps the effects of system loads and generators, considering single inertia constant (H) and damping (D_i) coefficient. The single inertia constant is the sum of the inertia constant of all the generating units inside the i-th control area. The following first-order differential equation defines the dynamic of the frequency deviation Δf from the steady-state point (f_0, rated frequency) in the i-th control area:

$$\Delta f_i = \frac{1}{2H_i} (\Delta P_m + \Delta P_{MESS} - \Delta P_{t_i} - \Delta P_{net})$$

(1)

where ΔP_m is the change in the mechanical power, ΔP_{MESS} the change on power delivered by the F-MESS, ΔP_{t_i} the change on load power, ΔP_{net} the deviation of tie-line power leaving the i-th control area, and $i = 1, \ldots, N$. The dynamic related to the reheat steam generator unit is described by:

$$\Delta P_{sp} = \frac{1}{T_{eq}} \left(\Delta P_{g_i} + \Delta P_{m} \right)$$

(2)

where ΔP_{g_i} is the change in the output from the governor to the turbine, ΔP_{sp} is the change in the output from the secondary control loop altering the production set point to the governor, T_{eq} and T_{g_i} are time constants of the turbine and governor, and R_i the droop. In this research paper, the dynamic of the tie-line power control, together with the algebraic model of the simplified transmission system is included as $[11]$

$$\Delta P_{t_i} = K_{s_i} (\Delta P_{net} + \beta_\Delta f)$$

(3)

$$\Delta P_{net} = 2\pi M \Delta f$$

(4)

where K_{s_i} is the secondary control gain, β the bias factor, M the synchronising coefficient matrix, and $\Delta f = [\Delta f/ \Delta f/ \Delta f]^T$.

C. Fast-Multi-energy storage system (F-MESS)

Frequency control in low inertia systems requires a high-speed injection of frequency dependent active power. Therefore, new technologies are increasing participation in high-speed frequency services, flywheel, supercapacitors, and some batteries technologies can provide full power in less than second scales. The main interest is the frequency control at low inertia system; therefore, two energy storage technologies are considered: (i) Flywheel, and (ii) supercapacitor.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Test system: three-control area power system, including F-MESS}
\end{figure}

1) Flywheel

The i-th area consists of several flywheels, and the dynamic behaviour of each flywheel j is represented by a set of first-order differential equations defining the electromechanical dynamics of the flywheel [11]:

$$\dot{\omega}_j = \frac{1}{J_\omega} \text{sat} \left(\frac{\Delta P_{FW,j}}{\omega_j} \right)$$

(6)

where ω_j [rad/s] is the angular velocity, $\Delta P_{FW,j}$ [p.u.] and ω_j [p.u.] internal states associated with the delay introduced by the power converter and the internal controller, respectively. J_ω [kg⋅m²] is the moment of inertia of the flywheel, T_ω [s] a time delay, $K_{FW,i}$ [p.u.] the number of flywheels in the i-th area, $P_{FW,j}$ [p.u.] the set point for total power delivery from all flywheels in area i, and $j = 1, \ldots, K_{FW,i}$. From this, the total
delivered power from the flywheels in each area \(P_{FW,i}\) [p.u.] and state of charge (SOC) [%] can be calculated as follows:

\[
\Delta P_{FW,i} = K_{FW,i} \sum_{j=1}^{N_{Scunits,i}} sat \left(\frac{z_{FW,j}}{\omega_{ij}} \right) \omega_{ij}
\]

\[
SOC_{FW} = \frac{1}{K_{FW,i}} \sum_{j=1}^{N_{Scunits,i}} \left(\frac{\omega_{ij}^2}{\omega_{ij,\text{max}}} \right)
\]

where \(\omega_{ij,\text{max}}\) is the maximum angular velocity of the flywheel.

The contribution from the flywheels is controlled based on the frequency deviation in each area using a proportional controller with proportional gain \(K_{FW,i}\):

\[
\Delta P_{FW,i} = -K_{FW,i} \Delta f_i \tag{8}
\]

and the contribution from the flywheels is included in the N-control area model by adding the following to \(\Delta P_{\text{MESS}}\):

\[
\Delta P_{\text{MESS}} = \Delta P_{FW,i} P_{\text{baseFW,i}} \tag{9}
\]

where \(P_{\text{baseFW,i}}\) [W] and \(S_{\text{base}}\) [W] is the active power base for the flywheels and the N-control area model, respectively.

2) Supercapacitor

The \(i\)-th area consists of several supercapacitors. The dynamic behaviour of the \(j\)-th supercapacitor is represented by the differential equations [1], [12]:

\[
\frac{\partial z_{SC,j}}{\partial t} = \frac{1}{T_{ij}} \left(\frac{\Delta P_{\text{SC,j}}}{K_{\text{Scunits}}} - z_{SC,j} \right) \tag{10}
\]

\[
\dot{Q}_{ij} = -\frac{z_{SC,j} P_{\text{baseSC,j}}}{V_{SC,j}}
\]

where \(Q_i\) [C] is the electric charge, \(z_{SC,j}\) [p.u.] an internal state representing the power converter delay, \(\Delta P_{\text{SC,j}}\) [p.u.] the set point for total power delivery from all supercapacitors in area \(i\), \(V_{SC}\) [V] the voltage over the supercapacitor, \(T_{ij}\) [s] a time constant, \(K_{\text{Scunits}}\) [\(-\)] the number of supercapacitors in area \(i\), \(P_{\text{baseSC,i}}\) [W] the active power base of the supercapacitors and \(j = 1, \ldots, K_{\text{Scunits}}\). The expression for \(V_{SC,j}\) is as follows.

\[
V_{SC,j} = N_{\text{dij}} \frac{dQ_j}{N_{\text{pj}} N_{\text{ej}} c_j A_j} + 2 N_{\text{dij}} N_{\text{RTj}} \sinh \left(\frac{Q_{ij}}{N_{\text{dij}} A_j (R_{\text{RTj}} c_j c_j)} \right)
\]

\[
V_{SC,j} = \frac{\sqrt{V_{T}^2 - 4 R z_{SC,j} P_{\text{baseSC,j}}}}{2 K_{\text{Scunits,j}}}
\]

where \(V_{T}\) [V] is the internal voltage, \(N_{\text{dij}}\) [-] and \(N_{\text{pj}}\) [-] are the number of series and parallel supercapacitors, respectively, \(A_j\) [m] the molecular radius, \(N_{\text{ej}}\) [-] the number of layers of electrodes, \(\epsilon_j\) [F/m] the absolute permittivity of the material, \(A_{j}\) [m²] the interfacial area between electrodes and electrolyte, \(R\) [J/mol K] the ideal gas constant, \(T_j\) [K] the operating temperature, \(F\) [sA/mol] the Faraday constant, \(\epsilon_j\) [mol/m³] the molar concentration and \(R_{\text{SC,j}}\) [Ω] the internal resistance. The SOC [%] of the supercapacitor is calculated as:

\[
SOC_{SC} = \frac{100}{K_{\text{Scunits}} \sum_j \frac{Q_j}{Q_{\text{rated},ij}}} \tag{12}
\]

and the total delivered power from the supercapacitors in each area \(\Delta P_{SC}\) [p.u.] can be calculated as follows:

\[
\Delta P_{SC,j} = \frac{z_{SC,j} P_{\text{baseSC,j}}}{V_{SC,j}} \tag{13}
\]

\[
\Delta P_{SC} = \sum_j \Delta P_{SC,j} \tag{14}
\]

\[
\Delta P_{\text{MESS}} = \frac{P_{FW,i} P_{\text{baseFW,i}}}{S_{\text{base}}} + \frac{P_{SC,j} P_{\text{baseSC,j}}}{S_{\text{base}}} \tag{15}
\]

III. SYSTEM FREQUENCY RESPONSE ASSESSMENT

The objective of this paper is to assess the frequency support provided by an F-MESS considering low rotational inertia scenarios.

A. Test system description

The full detailed DAE model presented in the previous section has been implemented using MATLAB® R2019b. All equations are implemented by the authors and solved using the solver ode15s(). The test system consists of three-control areas, \(N = 3\) (see in Fig. 1), each control areas is equipped with an F-MESS: Flywheel energy storage system (FESS) and supercapacitor energy storage systems (SESS) (Numerical details of the model parameters from [1], [11]). The system frequency response is evaluated using two main variables: frequency deviation from the steady-state point (\(\Delta f\)) and the change on power delivered by the F-MESS (\(\Delta P_{\text{MESS}}\)).

A sudden step increases in the load demand in Area 1 and Area 3: \(\Delta P_{L,1} = \Delta P_{L,3} = 0.02\) p.u. applied at \(t = 1\) sec is used as a system frequency disturbance. For all cases, three indicators of the SFR are observed: (i) maximum frequency deviations (\(\Delta f_{\text{max}}\)), (ii) minimum frequency (\(f_{\text{min}}\)), and (iii)minimum time (\(t_{\text{min}}\)). Regarding the active power contribution of the F-MESS, the main indicator to consider is the maximum active power deviation of the combination of SESS and FESS (\(\Delta P_{\text{MESSt}}\)).

B. Definition of scenarios

The low inertia conditions are evaluated considering three simulation scenarios: Scenario I present frequency deviations (\(\Delta f\)) and the active power contribution of the F-MESS (\(\Delta P_{\text{MESS}}\)) considering the nominal amount of inertia in each area, i.e., \(H_i = H_0\) \(i = 1, 2, \ldots, N = 3\) (where \(H_0\) is the nominal inertia of each control area). Scenario II evaluate \(\Delta f\) and \(\Delta P_{\text{MESS}}\) when the inertia decreases 25% in each area, i.e., \(H_i = 0.75 H_0\). Finally, Scenario III consider a reduction in the inertia of 50%, i.e., \(H_i = 0.5 H_0\). Furthermore, each scenario evaluates two cases: Case I refers to the natural \(\Delta f\) response of the system without any F-MESS and Case II study the \(\Delta f\) response of the system considering F-MESS.

C. Numerical Results

Scenario I: In this scenario, the system inertia in each area does not change. Therefore, \(H_i = H_0 = 0.0833\)sec, \(H_0 = \ldots\)
When it is not considered the active power supply by F-MESS, and it is shown in Fig. 2. In this figure, Area 1, Area 2 and Area 3, respectively. Therefore, maximum frequency deviation as $f_{\text{max}}=49.938\text{Hz}$ in Case I to $f_{\text{max}}=49.942\text{Hz}$.

![Fig. 2. Scenario I ($H_i = H_0$), Case I: frequency deviation (Δf).](image1)

![Fig. 3. Scenario I ($H_i = H_0$), Case II: (a) Frequency deviation (Δf) and power delivered by (b) flywheel (ΔP_{FW}) and (c) supercapacitor (ΔP_{SC}).](image2)

The SFR indicators and $\Delta P_{\text{max,FMESS}}$ for Case I and Case II. It can be observed that $\Delta P_{\text{max,FMESS}}$ delivered by FESS and SESS is 0.1696 p.u., 0.2323 p.u. and 0.1676 p.u. in Area 1, 2 and 3, respectively. Therefore, f_{min} in Case II decreases 3.1%, 5.3% and 2.4% in Area 1, 2 and 3, respectively, concerning Case I.

Table I presents the SFR indicators and $\Delta P_{\text{max,FMESS}}$ for Case I and Case II. It can be observed that $\Delta P_{\text{max,FMESS}}$ delivered by FESS and SESS is 0.1696 p.u., 0.2323 p.u. and 0.1676 p.u. in Area 1, 2 and 3, respectively. Therefore, f_{min} in Case II decreases 3.1%, 5.3% and 2.4% in Area 1, 2 and 3, respectively, concerning Case I.

Table I. SFR indicators and the maximum active power released by F-MESS using the original inertia, Scenario I.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δf_{ref} (Hz)</td>
<td>-0.044</td>
<td>-0.043</td>
<td>-0.062</td>
</tr>
<tr>
<td>f_{ref} (Hz)</td>
<td>49.956</td>
<td>49.957</td>
<td>49.938</td>
</tr>
<tr>
<td>t_{min} (s)</td>
<td>1.585</td>
<td>1.559</td>
<td>2.006</td>
</tr>
<tr>
<td>$\Delta P_{\text{max,FMESS}}$ (p.u.)</td>
<td>--</td>
<td>0.1696</td>
<td>--</td>
</tr>
</tbody>
</table>

Scenario II: In this scenario, the system inertia decreases 25% from its nominal values in each area, i.e., $H_1 = 0.75H_0 = 0.0625\text{sec}$, $H_2 = 0.75H_0 = 0.0756\text{sec}$ and $H_3 = 0.75H_0 = 0.0468\text{sec}$. Fig. 4 shows Δf when the action of F-MESS is not contemplated (Case I) and it is observed that Area 2 has the maximum frequency deviation as $\Delta f_{\text{max,2}}= -0.070\text{Hz}$ and $f_{\text{min}} = 49.930\text{Hz}$. Moreover, the effect of reducing the inertia is reflected in the minimum frequency since it falls 0.008 Hz and t_{min} diminish 0.147 sec. Meanwhile, when the action of F-MESS is considered (Case II), Fig. 5 shows (a) Δf, (b) ΔP delivered by FESS and (c) ΔP delivered by SESS. In this case, the minimum frequency and minimum time occurred in Area 2, and its values are $f_{\text{min}}=49.934\text{Hz}$ and $t_{\text{min}}=1.836\text{sec}$. Moreover, the maximum active power was $\Delta P_{\text{FW}}=0.1294\text{p.u.}$ and $\Delta P_{\text{SC}}=0.1318\text{p.u.}$.

Table II. SFR indicators and the maximum active power released by F-MESS using decreasing the inertia 25%, Scenario II.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δf_{ref} (Hz)</td>
<td>-0.051</td>
<td>-0.049</td>
<td>-0.070</td>
</tr>
<tr>
<td>f_{ref} (Hz)</td>
<td>49.949</td>
<td>49.951</td>
<td>49.930</td>
</tr>
<tr>
<td>t_{min} (s)</td>
<td>1.497</td>
<td>1.490</td>
<td>1.859</td>
</tr>
<tr>
<td>$\Delta P_{\text{max,SMESS}}$ (p.u.)</td>
<td>--</td>
<td>0.1994</td>
<td>--</td>
</tr>
</tbody>
</table>

Scenario III: This scenario presents the dynamic results of reducing the inertia to 50% of its original value in each control area. The resulting inertia is $H_1 = 0.5H_0 = 0.0417\text{sec}$, $H_2 = 0.5H_0 = 0.0504\text{sec}$ and $H_3 = 0.5H_0 = 0.0312\text{sec}$. From this scenario, in Case I, $f_{\text{min}}=49.916\text{Hz}$ and $t_{\text{min}}=1.721\text{sec}$ occur in Area 2 (see Fig. 6). Due to the low inertia, these two values decreasing 0.022 Hz and 0.285 sec, respectively, regarding Scenario I, Case I. Furthermore, in Case II, the maximum power supplied by F-MESS are $\Delta P_{\text{FW}}=0.1526\text{p.u.}$ and $\Delta P_{\text{SC}}=0.1676\text{p.u.}$.
\[\Delta P_{\text{SC}} = 0.1577 \text{p.u. in Area 2. The minimum frequency and minimum time are } f_{\text{min}} = 49.921 \text{Hz and } t_{\text{min}} = 1.702 \text{sec} (\text{see Fig. 7).} \]

![Graph](image)

Fig. 6. Scenario III \((H_i = 0.5H_0)\), Case I: frequency deviation \((\Delta f)\).

![Graph](image)

Fig. 7. Scenario III \((H_i = 0.5H_0)\), Case II: (a) Frequency deviation \((\Delta f)\) and power delivered by \((b)\) flywheel \((\Delta P_{\text{FW}})\) and \((c)\) supercapacitor \((\Delta P_{\text{SC}})\).

Table III presents the SFR indicators and \(\Delta P_{\text{max,MESS}}\) for Case I and Case II. In Case II, \(f_{\text{min}}\) decrease 3.6\%, 6.2\% and 2.69\% in Area 1, Area 2 and Area 3, respectively, concerning Case I. Therefore, \(\Delta P_{\text{max,MESS}}\) required to improve the minimum frequency are 0.2367p.u., 0.3103p.u. and 0.2329 p.u. in Area 1, Area 2 and Area 3, respectively.

Table III. SFR Indicators and the Maximum Active Power Released by F-MESS Using Decreasing the Inertia 50%, Scenario III

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{min}}) (Hz)</td>
<td>49.938</td>
<td>49.940</td>
<td>49.916</td>
</tr>
<tr>
<td>(t_{\text{min}}) (s)</td>
<td>1.402</td>
<td>1.382</td>
<td>1.721</td>
</tr>
<tr>
<td>(\Delta P_{\text{max,MESS}}) (p.u.)</td>
<td>0.062</td>
<td>0.060</td>
<td>0.084</td>
</tr>
</tbody>
</table>

The active power delivered by the F-MESS (\(\Delta P_{\text{MESS}}\)) in Scenario II increases 14.92\%, 12.44\% and 14.57\% in Area 1, Area 2 and Area 3, respectively concerning Scenario I. Meanwhile, in Scenario III \(\Delta P_{\text{MESS}}\) rises 39.55\% in Area 1, 33.58\% in Area 2 and 38.95\% in Area 3 relating to Scenario I. Therefore, the total amount of \(\Delta P_{\text{MESS}}\) injected in the power system for a given disturbance depends on the quantity of inertia in the power system.

IV. CONCLUSIONS

The proposed DAE model, including F-MESS, has been evaluated considering low inertia operational scenarios. From the simulation results, it has been found that the inclusion of energy storage technologies (F-MESS: FESS and SESS) in the power system improves the frequency response indicators. Low values of inertia produce faster and more profound changes in the frequency and therefore, the time at which the frequency reaches its maximum deviation decrease (Case I). However, the inclusion of F-MESS (Case II) produces a reduction of the maximum frequency deviation, and as a consequence, the minimum frequency value grows. The amount of active power delivered by F-MESS try to substitute the rotational energy lost when the inertia decreases. Therefore, having the same disturbance, the amount of active power delivered by the F-MESS increase as the inertia decreases.

ACKNOWLEDGMENT

Ms Martha N. Acosta wants to acknowledge the financial support given by CONACYT (México) and the support of Universidad Autónoma de Nuevo León, México, and University of South-Eastern Norway, Norway.

REFERENCES

