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Hybrid systems such as Cyber Physical Systems are becoming increasingly popular,
mainly due to the involvement of information technology in different aspects of life.
For analysis and verification of hybrid system models, simulation is used extensively.
As parts of a common hybrid system may belong to different domains of study, it is
sometimes beneficial to use specialized simulation packages for each domain. In this
case, parts of a system are simulated in different simulation packages. The idea may seem
simple, but coupling more than one simulation component presents challenges related to
numerical stability. The presented article suggests an implicit solver coupling technique
enhanced to facilitate simulation of hybrid models using multiple simulation components.
The technique is developed using two of the most popular simulation interoperability
standards, namely, the High Level Architecture and the Functional Mock-up Interface.
By using these standards the developed algorithm will be useful for a large number
of practitioners and researchers. The developed algorithm is described using a generic
distributed computation model, which makes it reproducible even without using the
standards. For the verification of results, the algorithm is tested on two case studies.
The results are compared to a monolithic simulator and the proximity of results initiates
the validity of the developed algorithm.

Keywords: Distributed simulation algorithms; co-simulation; distributed simulation; par-
allel simulation; continuous simulation; simulation interoperability; DEVS; OpenModel-
ica; Modelica.

1. Introduction

Modeling and simulation has become a corner stone for verification of mathemat-

ical phenomenon found in nature. Development of simulation packages follows the

same pattern of fragmentation which is usual to the study of natural phenomena.

Physicists, chemists, mathematicians and mechanical engineers have developed sim-

ulation packages suitable for their own domains. Most popular Simulation Packages

(SPs) either focus on one domain of problems or on a specific type of system speci-
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fication. The differences in approach and domain imply algorithmic and mathemat-

ical challenges, when coupling more than one simulation component.

Hybrid systems are prevalent in every day life. For example, Cyber Physical

Systems (CPS) is a class of systems where a physical system is augmented by

information technology. When analyzing such systems, mostly cyber and physical

parts are simulated using separate simulation packages. For example, a simulation

of an optimized model-predictive control of an urban power system is likely to have

a power grid simulator along with an ICT simulator.

Using already verified models to construct a simulation of a larger system is

very beneficial. However, the benefits cannot be fully utilized if the developed tech-

nique itself requires modification of the simulation packages. Intuitively, the most

useful technique could only be the one which follows already developed standards

of simulation interoperability. Using standards can make the technique acceptable

and accessible in both industry and research.

The presented article suggests a distributed algorithm which can be used to cou-

ple more than one simulation component. The coupled simulation components are

allowed to be hybrid in nature, meaning some simulation components can contain

discrete events and others be purely continuous. The algorithm is implemented

using the High Level Architecture (HLA) and the Functional Mock-up Interface

(FMI), in order to make it operable for a wide range of simulation packages (for

details on HLA and FMI, see supplemental material Section S-1). According to

the knowledge of the authors, there has been no algorithm presented before which

allows the hybrid simulation of more than two independent simulation components.

The word independent means that each simulation component has its own solver.

Previously, an implicit solver coupling algorithm was proposed in [1], which only

allowed continuous simulation components to be coupled, no discrete event com-

ponent was allowed. In other efforts, only one continuous time and one discrete

event based simulation components were coupled [2]. The presented algorithm does

not put any restriction on the number or types of the simulation components. Any

number of continuous time and discrete event based simulation components can be

used.

In the next sections, first the state of the art with respect to the presented work

is discussed. Later, a brief overview of only the relevant parts of the HLA and the

FMI standards are discussed. After describing the distributed computation model

applicable to the algorithm, the algorithm itself is discussed in detail. Although, the

algorithm is developed using the HLA and the FMI, yet it is described in a generic

way, so it can be implemented without even knowing the details of these standards.

For verification of algorithm, results from two case studies are presented. Finally,

the paper ends with conclusions.
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2. Related Work

Different attempts to tackle the problem of simulation interoperability have been

made in the past. Some addressed the problem from a mathematical point of view,

while others devised standards to interface the components. Here we present a brief

overview of already proposed solutions with their shortcomings.

On the mathematical side, there are quite a few scientists who suggested formal

methods for coupling simulation components. To name a few, Tseng and Hulbert

suggested a simulation coupling technique for multibody simulation [3]. Kübler

and Schiehlen, in their paper [4], discussed different mathematical issues related to

simulator coupling. Recently, Schweizer et al. have discussed issues like numerical

stability and step size control of implicit [5], explicit [6] and semi-implicit [7] cou-

pling techniques. None of the articles mentioned above, discusses the interfacing

portion of the problem.

Discrete EVent Specification (DEVS) is a recognized modeling and simulation

technique. DEVS provides a systematic way of converting a continuous simulation

into a discrete event simulation [8], in effect, the DEVS professes that any hybrid

system can be simulated using DEVS. Zeiglar et al. [9] have mentioned the chal-

lenges faced while simulating DEVS specific simulation components over the HLA,

but the approach used for some solutions is less than correct, as argued in [10].

Besides other mathematical issues [11], the biggest drawback of DEVS is the diffi-

culty in coupling arbitrary simulation packages with the DEVS-specific simulation

package. Only those simulation packages are favorable for coupling that produce

DEVS-specific simulation components. The numerical stability of different solvers

used with DEVS paradigm is discussed in [11].

Ptolemy II [12] is another attempt to make development of heterogeneous sim-

ulations easier and faster. There have been efforts to interface it with the FMI

compliant components [13]. By adding support for FMI and enabling FMUs to

be executed in different processes, Ptolemy II may be considered as a tool which

supports distributed simulation. The biggest disadvantage of using Ptolemy II is

its lack of flexibility. Although, the methods for implementing a new solver or in-

corporating a new “director” are well documented, yet there are some limitations

imposed by the Ptolemy II kernel. For example, how it treats the events in the

queue, and when and how it processes them. The behavior can only be changed by

changing the kernel of Ptolemy II.

Due to the introduction of ICT into the management of power grids, it has

become vital to simulate models of power grids in conjunction with a communication

technology. In recent past, there have been quite a number of efforts to couple

ICT network simulators with power system simulators [14] to analyze models of

cyber physical energy systems, or in other words smart grids [15]. There are a few

limitations in the proposed simulation systems, as discussed below.

Most smart grid simulators do not try to couple more than one continuous

system. Often, only one continuous power system simulator is coupled with another
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discrete event based network simulator. In this case, the model does not have any

“algebraic” relationship among the simulation components, which makes things

much easier and manageable, but this is a limitation too. For example, consider

the scenario of a large city having a thermal supply and a power supply connected

to each other. To simulate such a scenario, a thermal energy simulator has to

be included in the coupled simulation of power grid and the ICT infrastructure.

Current smart grid simulators will not be able to simulate such a scenario due to

their incapacity of coupling more than one continuous simulator.

Many of smart grid simulators are built on implicit assumptions about the

underlying mechanism of distributed simulation. For example, many smart grid

simulators seem to assume that the time synchronization is a solved problem, so

they do not mention how they addressed the problem. It is not mentioned whether

there is any level of parallelism involved or not. If yes, then how the problems of

numerical stability, data sharing and time synchronization were addressed?

In many solutions, it is not mentioned clearly how the simulation time is pro-

gressed, in a fixed time stepped fashion, with the help of discrete events, or with

a step size control mechanism? Some power system SPs used in aforementioned

solutions only support fixed time stepped execution, which is problematic when a

discrete event does not occur right at the boundary of a fixed time step [11].

3. Model of Distributed Computation

To explain the forthcoming algorithm it is necessary to describe the relevant dis-

tributed computation model. As mentioned in [16], a system having different pro-

cesses connected via a networking medium is best described as an “asynchronous

message passing system”. A “message passing system” is a system where different

processes communicate with each other with the help of messages. This is in con-

trast to a “shared memory system”, where processes do not send messages, rather

they communicate using a shared memory space. One of the benefits of a mes-

sage passing system is their lesser dependency on concurrency control structures,

as compared to shared memory systems. The model of the HLA RTI is close to

the representation of an asynchronous message passing system. The only difference

with a traditional asynchronous message passing system described in textbooks like

[16], is the “Time Stamped Ordered delivery”, or TSO delivery. In an asynchronous

model there is no relation between the order of messages sent and received. Con-

trarily, in TSO delivery there is always a “time stamp” on each and every message

sent, and the same order is retained when the messages are received on the receiver

end. The messages sent with the same time stamp need not follow any order.

A system is considered to be an “asynchronous message passing system” when

there is no fixed upper bound on the messages to reach at the destination, or there

is no fixed time limit on how much time should be spent on any step. Due to these

conditions, if there are two messages m1 and m2 sent from processors p1 and p2
to a destination process pd, then there is no guarantee which message will reach
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the destination first. In the proposed modified model with TSO delivery, m1 must

reach before m2, if it has a time stamp less than m2. If both were sent on the same

time stamp, then there is no order enforced.

For a formal description of the algorithm, the RTI is considered as a separate

process rather than merely a simulation message bus. The process for the RTI is

referred to as prti. Describing the complete procedure of the RTI is far beyond the

scope of this article, but it is useful to have a small description of the prti for the

algorithm under consideration. The description contains the information how the

RTI is assumed to react on certain messages under consideration, according to the

HLA standard, without going into the details of their implementation.

The RTI follows two different models of communication which correspond to

the two main communication protocols namely, TCP and UDP. When “reliable”

mode of communication is desired, the TCP protocol is used, while in case of “best-

effort” mode the UDP protocol is used [17]. Here it is assumed that “reliable” mode

is being used for the implementation of the described algorithm.

Since the proposed algorithm assumes a message passing system, it must be kept

in mind that all the processes are executing in separate binaries, remote or local,

and they take actions on receiving a message similar to an interrupt driven system.

As the distributed processors assume an infinite execution of the processes [16], a

special state terminate is introduced in order to represent the state where they do

not respond to any new messages. Any distributed process acts in a specified manner

on receiving a message. In the algorithm, a message is identified by 〈Message〉. A

message may contain different parameters, like the simulation time associated to

the message, and the values of some attributes. Sometimes all these values are not

mentioned in the algorithm to avoid cluttering of information. In such a case, the

text and the supplemental material contain the required explanation separately.

The algorithm is developed using a master-slave configuration. Figure 2 shows

how the master is connected to all slaves via the RTI. The RTI works as a medium

for data and time synchronization, but master is the real orchestrator. The master

drives all the slaves, guides them through different states, and commands them to

reach a common goal. Slaves, on the other hand, are the work horses. Each one of

them contains an FMU inside, so they are called FMU-Federates. The master, on

the contrary, does not contain any FMU, it just executes the algorithm. Each slave

fulfills the commands sent from the master, some of these commands require to take

action on the FMU, like setting or getting state variables and input variables, and

setting or getting time of the FMU. The internal integration of each FMU takes

place at the slave level. At certain points in time (called as communication points)

the slaves share the data according to the directions imposed by the algorithm

executed at master level.
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Fig. 1: Figure shows how WR method proposes

to repetitively solve the coupled simulation com-

ponents while sharing the coupling state vari-

ables. The position of internal integration points
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Fig. 2: Figure shows how the mas-

ter, slaves and the RTI are con-

nected together. The dotted lines

for responses show that for some

commands master may not be ex-

pecting a response.

4. Hybrid Simulation Using Implicit Solver Coupling

The waveform relaxation method uses implicit solver coupling. It was first proposed

in [1]. The idea is to use repetitive evaluation and sharing of coupling state variables,

until they converge to one set of values. For each time step the loop to achieve

convergence is executed. Figure 1 shows the concept of Waveform Relaxation (WR)

scheme. The WR algorithm proposed in [1] is not capable of handling discrete

events, it is only proposed for continuous systems. The algorithm proposed in the

presented article, introduces how discrete event simulators can be coupled with

continuous time simulators. There is no boundary on the number of continuous

time or discrete event simulators. Moreover, the presented technique uses the FMI

and the HLA standards to make it applicable for a wide range of real life problems.

4.1. Algorithm Description

Referring back to Figure 2, there are three main components needed to implement

the proposed scheme, according to the distributed computation model discussed in

Section 3. A master, an RTI, and different FMU-Federates acting as slaves. The

relevant code for all three components is included in supplemental material, Sec-

tion S-2. Algorithm S.A-1 is the implementation detail for master, Algorithm S.A-2
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is the code for slave, and Algorithm S.A-3 shows how the RTI behaves according

to HLA specifications. The outputs of the FMUs loaded in slave processes are sent

to the master in form of tuples. A typical tuple has three elements, a name, a

value and the time. The time element stores the information when the value of

an output variable was changed, with respect to the simulation time. Its value is

also used to identify a discrete event. The value element is used by the master to

decide whether the iteration has converged or not. To access elements of a tuple,

following notation is adopted. The time is accessed as time(x), value as value(x)

and name as name(x), where x represents a single tuple or an element in the set of

inputs or outputs. Generally, when an element from the set of inputs or outputs is

sent to the master using a message, it has all three elements. Federates also com-

municate among themselves using tuples, but in that case the element time is not

present in the tuple.

Inputs and outputs are only communicated through the 〈Update〉 message. The

second parameter of the 〈Update〉 message is the name of the class, and the third

is the name of the attribute of the class to be updated. When an update is des-

tined for the master, the second parameter of 〈Update〉 is “Master”. When slaves

communicate the updates among themselves, the second parameter is “Slave”. In

a Federation Object Model (FOM) the “Master” and the “Slave” represent classes.

Although, there are many different ways to create a FOM for the presented algo-

rithm, it is assumed for a better understanding that each output of the system has

a unique name which is represented as an attribute in classes “Master” and “Slave”.

The “Master” is used for the updates destined for the master and class “Slave” is

used for slaves. When slaves communicate updates among themselves, there is no

need to associate time of update with the value, because in this context the infor-

mation is meaningless. The representation of update messages as described above

serves well to comply with the implementation. Still, the presented model is ab-

stract enough to remove the HLA (or HLA RTI) from the picture, if needed. Such

an implementation is only possible if the constraints imposed by the distributed

computation model are kept intact.

The main idea of hybrid simulation algorithm revolves around WR method of

implicit solver coupling [1]. If the lines from 27 to 34 are replaced by one single

line 33 in Algorithm S.A-1, then the algorithm will only be able to solve coupled

continuous systems. Lines from 27 to 31 constitute the portion which is responsible

for detecting and taking care of a discrete event. When a discrete variable changes

its state, the respective slave FMU-Federate sends a negative value as the update

time of the state variable. The statement is listed at line 27. With the negative

value of update time, the master identifies that a discrete event has occurred.

From Listing S.A-1 it is clear that there are two main loops in the algorithm. One

accounts for the simulation, in which the time is advanced. The second, inner loop,

is for the convergence checking. During the execution of the inner loop, if there is a

discrete event detected by the if statement at line 27, then the execution branches

out to a procedure called ProcessDiscreteEvent. The procedure is responsible for
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finding the exact time of the discrete event and then handling the discrete event.

The easiest way to handle a discrete event is to “abort” the processing of the

communication step and rollback to the previous state, as soon as a discrete event

is detected. Then reduce the step size to the minimum, and start simulating that

communication time step once again. When the discrete event is detected for the

second time, then exchange the discrete state variable among all other components,

and proceed as normal. Reducing the communication time step to the minimum

can cause performance issues. The procedure can be made faster by introducing

stage-wise finding of the precise time of discrete events. In the first stage, a point tl
on the time axis is searched, such that tl is very close to the point td and no discrete

event occurs at tl. Here td is the point on time axis where the discrete event occurs.

In stage 2, the time step is reduced to the minimum and discrete state variable is

propagated through the federation only once, just as described earlier. The process

of handling the discrete event in a stage-wise manner, is not part of Listing S.A-1.

It is omitted to let the listing remain easily understandable.

Each command in the Algorithms S.A-1, S.A-2 and S.A-3 is accomplished by

passing messages among processes. The messages used in hybrid simulation algo-

rithm are in detail described in Section S-3 of supplemental material. Here only the

important messages are enumerated.

• 〈Rewind, time〉: On receiving this command a “slave” process sets its state

variables back to the values attained at the end of the last time step.

• 〈Abort Iteration, time〉: The command is similar to 〈Rewind〉, here a slave

rewinds inputs to the previous values along with the state variables.

• 〈Advance Time, time〉: The command asks the “slave” processes to integrate

the FMU to the time parameter sent with the command. After the integration, a

slave sends the updated state variables in form of 〈Update〉 message(s).

• 〈Synch, time〉: On receiving this command a “slave” process sends the updated

state variables in form of 〈Update〉 message(s), back to the master.

• 〈Update, cls, attribute, output, time〉: The messages is used to communicate

the update of outputs. The first parameter can be either “Master” or “Slave”,

identifying the type of message. Second parameter is the name of the shared vari-

able to be updated. The third parameter takes the value based on the value of the

first parameter. For details, see Section S-3.

• 〈Share Data, time〉: The command asks all the slave processes to interchange

their dependent variables among them. Each slave updates its outputs which it

has published earlier, and then waits for the updates of all subscribed variables.

〈Share Data Non-discrete〉 and 〈Share Data Only discrete〉 do the same

thing, except that the former works only for continuous variables and the later

only for discrete ones. To communicate among themselves, slaves use the 〈Update〉
message, with parameter cls equal to “Slave”.

An important procedure used in the implementation is GetUpdates. The purpose

of this procedure is to make the master wait for all the updates destined for it. Its
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description start from line 2 in Algorithm S.A-1. The procedure sets the execution

state ExecState of the master as WaitForUpdates. In this state the master does

not do anything except for waiting for the updates. During this time it keeps sending

〈TARA〉 messages, to allow the RTI to process and provide any messages it has

received from other federates destined for it. The master changes its state during the

processing of 〈Time Grant〉 message. The sequence of commands executed in result

of receiving 〈Time Grant〉 message are listed at line 77 in Algorithm S.A-1. Here it

is checked whether all the updates which were destined to arrive, have arrived or

not. Once all the updates arrive, the ExecState is changed from WaitForUpdates

to UpdatesArrived.
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Fig. 3: The slave state machine of hy-

brid simulation algorithm. The area hav-

ing dotted background shows the portion

which tackles discrete event.

Both master and slave are state ma-

chines. The only difference is, the mas-

ter changes its state based on some con-

ditions, and a slave changes its state

on receiving a certain message. During

its simulation loop, the master keeps

checking the values of different vari-

ables and changes its state based on

the conditions applied on the variables.

A slave on the other hand, changes

its state only when it receives a com-

mand from the master to do so. In other

words the master and slave form the

same state machine shown in Figure 3,

the difference being, the master is the

leader in changing the states and slave

is its follower.

To provide a background for the

coming Section 4.2, the working of algo-

rithm is explained here in terms of mes-

sage exchanges and state transforma-

tions, as shown in Figure 3. The mas-

ter reaches state S1 after initialization.

The state S1 represents that the exe-

cution has entered into the simulation

loop. The first message originated by

the master is 〈Rewind〉 message. When

a slave receives this message and its simulation time is at 0.0, it does nothing, ex-

cept changing its state from S1 to S2. As the master also has changed its state to

S2 immediately after sending the 〈Rewind〉 message, it sends the 〈Advance Time〉
message, which leads it to state S3. The slaves follow the master and move to state

S3. If the condition at line 27 in Algorithm S.A-1 is true, then this means that a

discrete event has occurred. In that case, the master moves back to state S1 after
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sending the 〈Abort Iteration〉 message. The slaves follow and move to state S1 on

reception of 〈Abort Iteration〉 message. If the condition at line 27 is false, the mas-

ter moves to state S4 and sends 〈Share Data〉 message. As before, the slaves follow

the master. If there is no discrete event, then the loop continues until the values

of state variables converge. The condition of convergence is checked at line 17 in

Algorithm S.A-1. This leads the master from state S4 to S5, where it first sends

the 〈Synch〉 message before moving to S5. Then the master sends 〈End Iteration〉
message and moves back to state S1 for the evaluation of next time step.

If a discrete event occurs, then from state S3 master moves to state S8. The

change is represented in algorithm by the call to ProcessDiscreteEvent() at line 31

in Algorithm S.A-1. A similar loop executes there. After the proper handling of

discrete event, master comes back at state S1.

During the execution, the master keeps on sending the commands (messages) to

slaves and slaves only wait for them to reach. Once they get the command allowed

in a state, they execute the action and change the state. The master is the leader

in its state transformations, while slaves experience the same state transformations

by following the master.

In the description of algorithm most variables are named in a self descriptive

manner, though for more clarity description of some variables is given here. Vari-

able discEvent is a boolean variable who indicates whether a discrete event has

occurred during the iteration or not. The variable iterationOPs stores the outputs

of all FMUs at previous iteration, while currOPs stores their values at the cur-

rent iteration. The variable step stores the length of communication time step. The

constant TOL stores the value of error tolerance. The constant No stores the total

number of outputs of all the FMUs which are expected to be received at master.

The constant FMUin stores the number of inputs an FMU has subscribed to.

4.2. Proof of the Correct Synchronized Execution

In order to prove that a slave always follows the correct execution path induced by

the master, we denote the master state graph asM and slave state graph as S then

M� S (1)

Equation 1 means that S simulatesM, or in other wordsM and S have simula-

tion preorder relationship. Each move generated by the masterM can be simulated

by slave S . From this fact, it can be concluded that a slave always follows the mas-

ter correctly until and unless the order of commands sent from the master to a slave

is changed during network communication.

Change in order only affects the execution when the slave is in a branching state.

Branching states are highlighted in Figure 3. At a branching state (or branching

point), there can be cases when a slave can go into a direction not intended by the

master. Before proving that by using synchronization points such a situation can

be avoided, few structures must be defined
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• Σ is the set of all commands {µ1, µ2, µ3, . . . , µn}.
• Γj is the list of all commands sent to a slave slvj . A slave slvj removes a command

from Γj when it executes it. At any time it may contain a limited number of

commands induced by the master algorithm. As Σ is the set of all commands so

x ∈ Γj =⇒ x ∈ Σ. At any moment of execution |Γj | > 0.

• Λ is the set of all states {s1, s2, s3, . . . , sn} in the slave state graph.

• Λm is the set of all states {sm1 , sm2 , sm3 , . . . , smn } in the master state graph.

• Λf ⊂ Λ, contains all branching states in Λ.

• Λm
f ⊂ Λm, contains all branching states in Λm.

• Π is the set containing elements {Π1,Π2,Π3, . . . ,Πn}. An element Πi is the set

of all commands allowed at state si. So each Πi ⊂ Σ, with |Πi| > 1

The slave algorithm works in a way that it keeps accepting the commands and

saves them in Γj . At each state si it follows the first command it finds in Γj ∩Πi .

In order to prove that the synchronization algorithm works perfectly, it is sufficient

to prove that at any time during the execution of the algorithm, for the state si
active at that time, and the slave slvj , following is true

|Γj ∩Πi| 6 1 (2)

In order to prove above statement, it should be noted that there are certain

commands which work like synchronization commands for the slave and the master.

The state where the slave ends up in result of executing any of these commands is

called as a “synchronization point” or synchronization state. The master also ends

up at the similar state, in its own state graph, with a difference that it first gets

into the state and then issues the command. At these points the master waits for a

response from all the slaves and it does not issue any more commands until it has

received a response from all of them. It is easy to observe that the condition given

in Equation 2 can only be violated at a branching state where |Πi| > 1.

Lemma 1 Condition given in Equation 2 remains valid, if starting from any state

in Λm
f and Λf respectively, master and slave have to go through a synchronization

point in their state graphs, in order to reach any state— same or different—in Λm
f

and Λf again.

Proof. Suppose that the master has passed through a branching state smf . The

corresponding state of smf in slave is sf . By this, the master sends a command in

Πf to the slave. As synchronization point sms must follow it by definition, so the

master must wait for a response from all the slaves at sms . The corresponding state

to sms in slave is ss. At sms the master cannot send any more commands until it

receives all the responses. On the side of slave slvj , Γj now may or may not contain

a command present in Πf . In order to send a response back to the master, the

slave has to pass through sf and reach ss, because by Equation 1 a slave simulates

the master. To do this it must consume the command sent from the master. So

essentially when a slave reaches at ss, it must have consumed the command in Πf
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sent from the master. This means that when a slave slvj sends a response back to

the master, the set Γj does not contain any command in Πf . The property holds

for all branching states sf and their respective set of commands Πf , which proves

that lemma 1 is true.

The proof means that the condition given in Equation 2 is entailed provided

(1) All slaves simulate the master and the master sends commands in correct order.

(2) Conditions imposed by lemma 1 are valid in the state graphs of master and

slave.

The above discussion proves that if the condition given in Equation 2 remains

valid at all times during the execution of the simulation, then there will be no

problem of synchronization. The property is enforced by lemma 1. Looking at the

slave state machine in Figure 3, it is clear that there are no two branching states

reachable from each other without passing through a synchronization point. The

only exception is state S4 and S8, that can be reached from state S3 without pass-

ing through a synchronization point. An ambiguity is possible if list Γ has both

〈Share Data〉 and 〈Share Data Non-Discrete〉 in it and slave is at state S3. Looking

at the master Algorithm S.A-1, it is clear that this is not possible, because the mas-

ter does not generate 〈Share Data〉 and 〈Share Data Non-Discrete〉 consecutively

without issuing an 〈Advance Time〉 command, which enforces synchronization. It

is important to mention that the proof of synchronized execution is sufficient for

any number of slaves, because for the sake of synchronization each slave is only

dependent on the master.

4.3. Communication Step Size Control

ẏ = f(y, p) (3)

˙̂y = f̂(ŷ, p̂)

˙̃y = f̃(ỹ, p̃)
(4)

ed = |yf − y0|2 (5)

Step size control offers many advantages in any numeri-

cal integration algorithm. Implemented correctly, it can

significantly enhance the performance of an algorithm.

Here too, the communication step size control offers

many advantages. In the presented algorithm each com-

munication step is also followed by a sequence of mes-

sages among processes and the RTI. This means that

more communication steps result in more messages to

be communicated, which means more network traffic. In-

creasing network traffic does not only increase the load

on the network resources, but it also increases the prob-

ability of unwanted network delays. So increasing the

communication step size to the maximum, where the solution remains valid, is very

beneficial.

Looking at Figure 1, it is easy to understand that separating the ODEs means

that some or all of the state variables in a subsystem are going to evolve without
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the knowledge of state variables in other subsystems. Mathematically speaking,

suppose there is a system given in Equation 3

The state vector y contains n state variables y = (y1, y2, y3, . . . , yn). To perform

the numerical integration of the system, if an implicit method is used, then the

Jacobian of the system will be an n × n matrix, containing partial derivatives of

all the state variables with respect to each of them. Partitioning the system in two

(Equation 4), means that the Jacobian of each subsystem is also reduced to some

degree. If ŷ = (y1, y2, y3, . . . , yi) and ỹ = (yi+1, yi+2, yi+3, . . . , yn), then this means

that state variables in ŷ are being evaluated without their partial derivatives with

respect to yi+1, yi+2, yi+3, . . . , yn. Similar is the case of ỹ. This causes divergence in

the solution. If the divergence remains in a realm where the system remains defined,

then it is possible to recover the error through fixed point iteration. If not, then

this means that the gap between two communication steps is too large.

Following the idea of divergence, apart from error tolerance, there is an addi-

tional parameter introduced, which is called “divergence tolerance” told . This is

tolerance for the error caused by the divergence. If the state variable vector, as a

result of initial guess at the start of WR iteration, is y0, and at the end of fixed

point iteration, after the convergence, it is yf , then an estimate of the error ed
caused by the divergence is given in Equation 5.

At the end of each fixed point iteration the communication step size is either

increased or decreased by some percent, based on the fact that ed+τ0‖yf−yi‖max <

told or ed + τ0‖yf − yi‖max > told. Here τ0 is a small positive value used for

normalization. During processing of a discrete event, the communication step size

is intermediately reduced to minimum. After the discrete event, the communication

step size takes some time to recover its value. At that moment the mechanics of

communication step size control becomes evident. Figure 5a shows the phenomenon

by zooming into that situation, for one of the test cases described in Section 5.

5. Test Cases

Two examples are chosen to demonstrate the correctness of the algorithm. First

example in Section 5.1 examines a problem in which determining the time of discrete

event is difficult. In this test case, the decision whether a discrete event has occurred

or not depends on the values of input variables of a component. Changing these

values by a very small fraction can invert the decision about the discrete event. So

finding the precise time of a discrete event becomes very challenging.

The second case study examines a relatively bigger problem, with more than 50

state variables. The system is quite sensitive and comes from a real life problem in

the domain of smart grids.

Results of both test cases are compared with the results of a monolithic simula-

tor, to verify the correctness. Albeit, it should be kept in mind that the applicable

domain of distributed simulation and monolithic simulation is almost disjoint. To

simulate a system in a monolithic simulator, a modeler must have the complete
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mathematical description of the system. With the distributed simulation, on the

other hand, a modeler may co-simulate partially known models in conjunction.

One purpose of developing complex simulations is to understand any phe-

nomenon which is difficult to experiment in real life. In this way modeler tries

to verify the theory by “simulating” the real life phenomenon rather than going

in the labor to perform a physical experiment. In some situations, there is not a

“complete” mathematical description of the phenomenon, in the first place. The

only thing a modeler knows is the mathematical models of “parts” of the system.

To be able to see how these parts interact and evolve with each other, a modeler

takes the help of a distributed simulation.

Vx, Vy X, Y

Vx,Vy

Y

X,YStair,

Stair,

Contact

X,YStair,

Contact

Fig. 4: Division and interdependence

of different subsystems in the bouncing

ball problem. The arrows show infor-

mation flow. The square element shows

discrete component, while the circular

elements show continuous components.

Further, there are situations where a

modular approach is always more cost ef-

fective, because independent models of in-

dividual components are easily usable in

different scenarios. Case study 2 is one

such example. In this case study it is ben-

eficial to create models of different compo-

nents separately and let them co-simulate.

Later, when it would be felt that more

components should be added into the sce-

nario, or behavior of a component has to

be changed, complete redesign of the sce-

nario would not be necessary.

Algorithm 1 Discrete Part CS-1

begin

if (y < hstair) then

δcontact ← 1

else if (y > hstair) then

δcontact ← 0

end

if (x−N +1+hstair > 0) then

hstair ← hstair − 1

end

end

5.1. Case Study - 1

The first case study is a very popular hybrid system i.e. a ball being dropped from

a height on stairs, namely a “bouncing ball on stairs”. The model is given by the

system of System of equations 6. The discrete part is given by the algorithm 1.

Figure 4 shows how different FMU-Federates are associated with each other, via

their state variables.

Here g is the gravitational constant, while c0, c1, c2 and c3 are constants that

facilitate the phenomena of friction, air resistance, damping and mass of the ball.
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The variables hstair and δcontact represent discrete variables. The variable δcontact
shows that the ball is in contact with the floor or not. When δcontact = 1 the system

shifts its behavior immediately at that point. The variable hstair shows the step of

the stair that ball is currently bouncing on. Initially, its value is N in algorithm 1.

ẋ = vx

ẏ = vy

v̇x = −c0vx
v̇y = −g − c1vy − δcontact((y − hstair)c2 + c3vy)

(6)

For the presented

run, the value of “di-

vergence tolerance” was

told = 1 × 10−3.

The value is relatively

large. Using a smaller

value makes results

more accurate, but that

results in more com-

munication steps and performance deterioration.

Figure 6 shows the results produced by OpenModelica [18] and the hybrid simu-

lation algorithm (more results can be seen in Section S-4 of supplemental material).

It is clear that there are little differences in the results. The difference between

results are obvious due to the completely different treatment of events in Open-

Modelica DASSL algorithm. Figure 5b shows how OpenModelica cuts the contact

dynamics out, and converts the system into a piece-wise continuous system.

Lundvall et al. [19] describe how OpenModelica changes a hybrid system into

a hybrid system of DAEs, separating it into a continuous part and a discrete part.

This and many other simplification methods are examples of those advantages which

monolithic simulation packages have. A distributed algorithm with current state of

technologies cannot simplify the system as such. Most importantly, this type of

simplification is something which a modeler may not wish to apply in complex
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Fig. 5: Different treatment of discrete events by both solvers.



April 21, 2017 10:21 WSPC/INSTRUCTION FILE Awais˙IJMSSC˙2016

16 M.U. Awais, M. Cvetkovic and P. Palensky

0 1 2 3 4 5 6
Distance covered by the ball (x)

4

5

6

7

8

9

10

11

H
e
ig

h
t 

o
f 

th
e
 b

a
ll 

(y
)

0 1 2 3 4 5 6
Distance covered by the ball (x)

4

5

6

7

8

9

10

11

H
e
ig

h
t 

o
f 

th
e
 b

a
ll 

(y
)

Fig. 6: Comparison between proposed algorithm (left) and OpenModelica (right).

simulations, as discussed at the start of this section.

5.2. Significance of the Approach

Focusing on the specific type of simulation methodology, the presented hybrid sim-

ulation algorithm does not simplify the phenomenon of bouncing ball on stairs. It

models parts of the system, discrete and continuous separately, and lets them evolve

with each other governed by the algorithm. The results presented here show the

success of the algorithm, as they are so close to the results obtained by a monolithic

simulator (OpenModelica). From this, it can be easily deduced that the algorithm

is able to simulate a partially modeled physical phenomenon successfully. Here a

partial model means that the “complete” model of physical (or cyber physical) phe-

nomenon is not known, and the modeler, by providing mathematical description of

the parts of the system, is relying on the algorithm to accurately simulate the parts

of the system as a whole.

5.3. Case Study - 2

The second case study is taken from the power system domain. In this case study,

the performance of the secondary voltage control in a power system is investigated.

The goal of secondary voltage control is to keep the voltage of a pilot bus (a bus of

interest in a large grid) at a predefined reference value.

The power system model chosen for this study is the IEEE 14 bus system model

[20]. This system is used in many studies of power system transients due to its

manageable size and complexity, while still being able to demonstrate the most

typical transient phenomena [21]. The system is composed of 14 nodes (some of

which have demand connected to them) and 5 generators. Each of the generators

is composed of a synchronous machine governed by an Automatic Voltage Control

(AVR) system. The AVR controls the voltage level at the terminal bus. The terminal

bus of a generator is the node at which that generator is connected to the grid. The
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secondary voltage control modifies the set-points of AVRs. The secondary voltage

control receives these set-points and the set-point of the pilot bus from the grid

operator.

q = q1 +Kp(Vpref − Vp)

q̇1 = K0(Vpref − Vp)

V̇sgi =
1

Tgi
(Xtgi +Xeqgi)(q.Qgr −Qgi +Qrefgi) where i = 1, 2, 3, 6, 8

Vgrefi = Vsgi + Vgref0i where i = 1, 2, 3, 6, 8

(7)

The simulation use case is composed of three FMUs. The first FMU is a contin-

uous module which contains the model of IEEE 14 bus system. The second module

is the secondary voltage controller module. The third module is a grid operator

module that is implemented as a discrete event component.

The model for the IEEE 14 bus system together with AVRs is derived from

the IPSL library [22]. The library is developed for Modelica use under the ITesla

project. The mathematical model of the secondary voltage control is taken from

[23], the FMU is implemented in Modelica by the authors. System of equations 7

represents the secondary voltage controller in mathematical terms.

Among the parameters of the System of equations 7, K0 and Kp represent the

gains of the controller. In the presented simulation run their values are 0.1 and

1.0, respectively. The inputs coming from the IEEE 14 bus system module are

represented by Vp and Qgi for i = 1, 2, 3, 6, 8. The first five inputs are the reactive

power components of the generation buses. The input Vp is the voltage magnitude

of the pilot bus. The input from the discrete event module is Vpref , which is the set

point for the pilot bus. All other variables are different parameters of the controller

that can be changed according to the controller deployed at the site. The outputs

from the controller are Vgrefi where i = 1, 2, 3, 6, 8. These are the calculated set-

points for the AVRs of the generation buses. Naturally, they are the inputs to IEEE

14 bus module.

In the case study, the response of the grid voltage to the change in the voltage

set-points is investigated. Bus 5 is chosen as the pilot bus and voltage set-point

of this bus is stepped-up on every 60 seconds to mimic the action of the system

operator who is observing dangerously low level of voltage at this bus and is working

on restoring it to nominal levels. The reference for the voltage on the pilot bus

changes from 1 to 1.02, and then to 1.04, and finally to 1.06 per unit in a 3 minute

time span. Then the voltage is set back to 1.04. After 500 seconds operator decides

to set the voltage reference point even lower, i.e. 1.02, and after 60 more seconds it

is set to 1.00. The pilot bus voltage behavior is observed in Figure 7 (more results

can be seen in Section S-4 of supplemental material). We see that the voltage level

of the pilot bus increases with the increase in the reference voltage. This speaks in

favor of a quality design of the secondary voltage loop.

In Figure 7, comparison of responses is presented, between hybrid simulation
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Fig. 7: Comparison between proposed algorithm (left) and OpenModelica (right)

algorithm and OpenModelica. The right hand side of Figure 7 represents the simu-

lation of the same system as a monolithic Modelica model. Only a small differences

between the two is observed, at the order of 10−8. Based on this observation it can

be concluded that the simulation of the power system using the hybrid simulation

algorithm is as good as the monolithic one for this particular application (testing

of secondary voltage control). Since power systems are complex in nature, further

investigation is needed in order to assess the adequacy and accuracy of the hybrid

simulation algorithm for other power system applications.

5.4. Advantages of the Modular Approach

There are considerable advantages of this approach. First, it allows the modular

development of the simulation. Already tested modules can be coupled with each

other for testing and verification. Different controllers with different power grid

systems can be coupled and the results can be examined. Introducing many types

of faults during the execution is possible. Introduction of noise in the sensory data of

controller is possible. Most importantly, the discrete event module may be a lot more

complicated than it is in this prototype. A well formed artificial intelligence module

can replace it, which collects the sensor values of the power grid and takes actions

based on its expert knowledge. Implementing such an intelligent agent is much more

difficult a task to do in Modelica, than doing this in a language specially designed

for intelligent agents, like Prologue. Any other intelligence mechanism becomes far

more usable, for example, artificial neural networks or support vector machines.

6. Conclusion

The article presents a distributed simulation algorithm for hybrid systems. The

algorithm does not put any condition on the number or type of simulation com-

ponents. Any number of continuous and discrete components are permissible. For

modern simulation applications, many different simulation packages have to be used
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simultaneously. The algorithm presented here enables the modeler to develop differ-

ent parts of the complete system in different simulation packages and then simulate

them together. However, the components must adhere to the FMI specifications.

The algorithm also uses an RTI specified by the HLA standard. The conformance to

the HLA is not needed though. The article describes how an FMU can be changed

into a component adhering to HLA specifications. Such a component is named

FMU-Federate.

For verification, two hybrid systems are simulated, and their results are com-

pared to the results produced by a monolithic solver; OpenModelica. The results

show that there are some discrepancies in the details, still the overall behaviors

of both the systems are identical to the behaviors presented by OpenModelica.

It is argued that performance comparison between a distributed technique and a

monolithic one is not justified, as both address their own spectrum of problems. A

monolithic solver simply cannot be used in situations where there are more than

one simulation components and each component is executed by a completely in-

dependent simulation package. Only a distributed algorithm can be used in such

situations. One such algorithm is presented here. Using the algorithm purely con-

tinuous components can be coupled with discrete event based components.
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