
Resilient, Auditable and Secure IoT-Enabled Smart
Inverter Firmware Amendments with Blockchain

Raifa Akkaoui, Alexandru Stefanov, Member, IEEE, Peter Palensky, Senior Member, IEEE, and Dick H.J. Epema

Abstract—The solar industry in residential areas has been
witnessing an astonishing growth worldwide. At the heart of
this transformation, affecting the edge of the electricity grid,
reside smart inverters (SIs). These IoT-enabled devices aim to
introduce a certain degree of intelligence to conventional inverters
by integrating various grid support capabilities (e.g., voltage and
frequency control). However, with the remarkable automation
of these devices come enormous security risks. Thus, rising
rates of vulnerabilities have increased the necessity for designing
resilient, auditable and secure SIs’ firmware over the air (FOTA)
amendment schemes suitable for this heterogeneous SIs-based
ecosystem. In this regard, we propose leveraging blockchain as an
innovative technology to guarantee these cyber-security require-
ments. In this paper, we present the design of a distributed FOTA
scheme, namely RASSIFAB, governing the process of amending
SIs’ firmware within residential areas in an immutable and
scalable manner. The scheme was implemented on a blockchain
test network to assess its functionalities and performance. We
also carried out a security evaluation to determine whether
RASSIFAB is resistant to various identified threats. The obtained
results confirm that the scheme is efficient and sound. They also
indicate that RASSIFAB ensures reliable and authentic firmware
amendments even with malicious insiders, differentiating our
framework from the existing ones.

Index Terms—Blockchain, distributed energy resources,
firmware, internet of things, photovoltaic, security, smart inverter.

I. INTRODUCTION

PHOTOVOLTAICS are estimated to account for nearly
60% of the additional capacity of renewable energy

resources worldwide by 2025. In particular, according to
the Renewables report published by the International Energy
Agency, the global share of rooftop solar panels installed
within residential areas rounded up to 30% of the total solar
panels’ deployment in 2020 [1]. This eventually led to the
advancement and adoption of innovative technologies to tackle
the effect of the proliferation of these distributed energy
resources (DERs) and smooth their integration within the low
voltage (LV) networks of the electricity grid. At the heart
of these ingenious ever-evolving technologies, we find solar
smart inverters (SIs). These Internet of things (IoT) enabled
devices stretch far beyond their basic functionalities as they
can additionally provide ancillary grid services (e.g., volt-
age/frequency support and ride-through capabilities), which

Manuscript received 31 October 2022; revised 12 April 2023; accepted
28 September 2023. (Corresponding author: Raifa Akkaoui.)

Raifa Akkaoui, Alexandru Stefanov, Peter Palensky, and Dick H.J.
Epema are with the Delft University of Technology, Delft 430074, Netherlands
(e-mails: {R.Akkaoui,A.I.Stefanov,P.Palensky,D.H.J.Epema}@tudelft.nl).

Copyright (c) 2023 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

are recently becoming mandated in the revised versions of
existing DERs technical standards as well as several grid codes
(e.g., IEEE 1547-2018 [2] and the German grid code VDE-
AR-N 4105 [3]).

A. Motivation

It is undeniable that the Internet-of-Energy paradigm steered
the enhancement of DERs’ integration through the automation
of the power grid’s infrastructure and the implementation of
DERs management systems (DERMSs) that enable a wide
range of capabilities through (near) real-time communication.
Nonetheless, its lack of cyber-security inherited from the IoT
paradigm has raised some eyebrows within network operators,
i.e., transmission system operators (TSOs) and distribution
system operators (DSOs). In fact, these IoT-enabled DERs
could potentially be leveraged using their vulnerabilities (e.g.,
Mirai botnet [4], [5], BlackIoT [6]) as an attack-vector to dis-
rupt the power supply by causing voltage issues and frequency
instabilities, which could lead to power outages.

On the one hand, the vulnerabilities of IoT devices and
SIs in particular, have been extensively documented in the
literature [7], [8], such as spoofing attacks where the hacker
would masquerade as the DERs’ aggregator (DERA) and
alter critical settings of the SIs (e.g., Volt/Var or Volt/Watt
curves). In addition, the authors in [9] demonstrated the
possibility of launching a man-in-the-middle (MitM) attack on
commercial SIs supporting ancillary services, which could lead
to an intentional false-tripping of whole feeders, eventually
causing a regional blackout. Meanwhile, firmware over-the-air
(FOTA) security updates and/or patches are amongst the crit-
ical procedures within cyber-physical systems. For instance,
the 2015 cyber-attack on the Ukrainian power grid was further
complicated when the attackers were able to alter (or reverse
engineer) the firmware of the serial-to-Ethernet converters
within dozens of substations, which prevented the operators
from implementing any remote procedure for recovery [10].
Furthermore, the authors in [11] studied the impact of reverse
engineering the firmware of power grid devices on an IEEE 14-
bus test system. Specifically, on commercial protection relays
within substations to alter the normal behaviour of circuit
breakers, which resulted in cascading failures. In addition,
CVE-2017-9860 [12] is a vulnerability discovered that could
potentially allow an attacker to update an SI’s firmware
without proper authentication.

On the other hand, FOTA amendments conventionally rely
on a cloud database from where the binary files are down-
loaded, as illustrated in Fig. 1 for the case of residential SIs.

OEM Devices

Management System

Update/Patch

Released

Cloud Database

Push or Pull Firmware

Update/Patch

P
h

o
to

vo
ltaics S

m
art In

verters

Fig. 1: Conventional FOTA amendments for SIs.

This storage could be either on-premises meaning it is hosted
and administered internally by the manufacturers themselves
using their on-site information technology resources, or of-
floaded to a third-party cloud service provider. The advantage
of the first approach is that critical and proprietary data
regarding the firmware’s code are protected by the organization
following its internal guidelines; however, the vendor could
still be the target of a cyber-attack either from an external
or insider adversary that may tamper with the stored files
by injecting some malware. Meanwhile, the second approach
gives many economical and technical advantages, such as
low cost in terms of maintenance and high redundancy that
guarantees availability with an uptime of nearly 99.99%;
nonetheless, the approach raises a series of concerns, such
as privilege escalation attacks and privacy due to security
breaches [13]. Therefore, rather than focusing on the single
point-of-failure of cloud-based systems in the sense of having
the database going down. It’s rather essential to focus on
the over-reliance on third-parties, or broadly speaking on a
single governing entity (which could also be the manufacturer
itself in this case), this may create a single point-of-weakness
leading to an inherent bias and selective disclosure [14].

Therefore, a consortium blockchain-based framework where
various entities all share the governance of the whole ecosys-
tem and no participant alone is in charge of the decision-
making seems to be beneficial and a perfect fit. Besides, the
blockchain ledger would also serve as an immutable audit
trail for all data and actions undertaken regarding any issued
firmware update, that could be used for future digital forensics
analysis. Whereas the InterPlanetary File System (IPFS) would
serve as a storage layer for the blockchain focusing on the
reliability and immutability of the firmware files [15].

B. State-of-the-Art

Securing firmware amendments has attracted tremendous
attention from the research community. Some approached
the security challenges of the procedure through hardware-
assisted schemes such as trusted execution environments or
physical unclonable functions (PUF) [16]–[18], whereas others
introduced variations of cryptographic mechanisms such as
checksums and code signatures for authenticity [19]–[21] to
secure the conventional centralized way of FOTA amend-
ments. Nonetheless, these schemes still rely on individual-
based decision-making due to their centralized architecture.

Blockchain, hailed as one of the utmost disruptive technolo-
gies, was harnessed for various IoT-based applications [22],
[23], but in particular to tackle the limitations of conventional

centralized-based FOTA schemes. For instance, in [24], the
authors proposed an Ethereum-based scheme for updating IoT
devices’ firmware. Where upon the release of a new firmware
the vendor node part of the blockchain creates and deploys a
smart contract (SC) to record the data on the shared ledger.
However, the scheme is based on the assumption that each
original equipment manufacturer (OEM) has a single node
responsible for storing the firmware data on the blockchain,
thus if this single node is hacked the devices might download
binary files that have been tampered with. Furthermore, in
[25] an Ethereum-based framework to manage FOTA updates
for medical IoT devices was proposed, where each OEM node
would send a transaction to the blockchain network containing
the URI of the firmware to the gateway of the devices.
Nonetheless, the scheme still relies on the centralized repos-
itories of the OEMs, which could eventually be a target of a
cyber-attack affecting the reliability of critical patches. Mean-
while, Bere et al. in [26], focused on the firmware check and
recovery procedure for SIs using blockchain. The distributed
ledger is used to store in an immutable way the metadata of the
firmware. Whereas the on-board security module connected
to the device is responsible for periodically checking if the
current version of the installed firmware matches the one
recorded by the vendor. Still, the security of the scheme relies
on the data written on the ledger, which is recorded by a
single vendor client. In addition, the framework is based on
a private blockchain managed by a single OEM, meaning
that the proposed solution is more suitable for homogenous
ecosystems. However, residential LV networks equipped with
a large share of DERs are characterized by devices coming
from a myriad of vendors. Thus, the heterogeneity aspect of
these devices should also be accounted for while designing an
FOTA framework.

C. Contributions

In this paper, we aim to address the aforementioned gaps
by proposing a resilient, auditable and secure SIs firmware
amendments with blockchain (RASSIFAB) framework suit-
able for heterogeneous ecosystems. The framework is based
on two developed SCs; the first is used for the initialization
phase including the registration of the entities part of the
system (i.e., TSOs, DSOs, OEMs) as well as the IoT devices
(i.e., SIs). Whereas the second is used to monitor the status
of the SIs’ firmware and issue new updates or patches with a
distributed and autonomous checksum verification on-chain of
the firmware metadata. In addition, to address the OEMs’ over-
reliance on single trusted third parties, we propose to utilize
a P2P file-sharing system based on the IPFS, where different
OEMs form a coalition to store the encrypted binary firmware
files. To the best of our knowledge, there exists no blockchain-
based scheme dedicated for SIs’ FOTA amendments that
considers the heterogeneity aspect of these devices within the
edge of the SG as well as the threat of insider attacks posed
by the various OEMs part of the ecosystem. To summarize,
the major contributions of this paper are as follows:

• We propose a distributed access control-based FOTA
amendment scheme for heterogeneous SIs within the

residential LV networks of the SG that addresses the
threat of insider attacks.

• We implement a proof-of-concept of RASSIFAB to
demonstrate its feasibility, with a performance evaluation
of the framework based on various metrics as well as a
security analysis following the defined threat model in
order to assess its efficiency and soundness.

D. Paper Organization

The rest of this paper is organized as follows. Section
II represents some security standards and best practices for
firmware amendments in general and DERs in particular. In
Section III, we present the architecture design of our proposed
blockchain-based system, its threat model and goals. Section
IV, details the system’s workflow and functionalities. The
implementation of RASSIFAB, including the performance as
well as security analysis are discussed in Section V. The
related work is examined in Section VI with an in-depth
comparison between our scheme and the existing ones as
well as the limitations of RASSIFAB. Finally, Section VII
concludes this paper with some future directions.

II. SECURITY STANDARDS AND BEST PRACTICES

Securing FOTA for IoT devices in general and the cyber-
security aspect of DERs have been the focus of various
standardization initiatives by multiple international agencies.
Including the Internet Engineering Task Force (IETF), the
National Institute of Standards and Technology (NIST), the In-
ternational Electrotechnical Commission (IEC), the Institute of
Electrical and Electronics Engineers (IEEE), the Underwriters
Laboratories (UL), and so forth. Where the major goal of these
initiatives has been to provide a shared platform for debate,
with a set of explicit best-practices and recommendations that
would further enhance the security of IoT devices in general
and DERs in this particular use case.

For instance, the IETF RFC 8240 [27] is a summary of
the IoT software update workshop held in 2016 and organized
by the internet architecture board. The workshop aimed to
discuss several challenges and vulnerabilities relevant to the
procedure of updating and/or patching IoT devices’ firmware.
This eventually led to establishing the IETF software updates
for IoT (SUIT) working group [28], which focuses on defin-
ing various components of a security update solution (e.g.,
transport protocols, firmware’s metadata, cryptographic mech-
anisms for integrity checks, etc.). Among the tasks completed
by the working group is the IETF RFC 9019 [29], which
defines a secure architecture for IoT devices’ firmware. In
addition, the IETF RFC 4108 [30] introduces a format for
firmware packages’ digital signatures utilizing cryptographic
message syntax, that contains an identifier, the firmware’s
version, a description of the package, certificate of the signer,
etc. Nonetheless, the approach is based on a single trust anchor
consisting of a public-key signing mechanism to validate the
hash of the firmware as well as the identity of the organization
that signed the package using its private key. Meanwhile, patch
management for industrial automation and control systems was
also addressed in the IEC 62443 Series [31].

R
esid

en
tial P

V
s’

S
m

art In
verters

Light nodes

Full nodes

Blockchain Network

Distributed

Storage of

Firmware Files

TSO/DSO

OEM

Smart

Contracts

✓ Access control rules

✓ Reputation

✓ Firmware metadata

Fig. 2: RASSIFAB abstracted system model.

Besides, code signing aims to ensure the firmware’s integrity
and non-repudiation. It is based on digital signatures for
the verification of provenance of the data (i.e., OEMs) and
checksum mechanisms (e.g., MD5, SHA-1, SHA-256, etc.)
to validate that the data was not subject to any modification
during the transit phase. As presented in the NIST white
paper [21], the procedure relies on three main entities, i.e.,
developer, signer and verifier. The developer is responsible
for creating the firmware code, ensuring it is bug-free using
the OEMs auditing tools and then sending it to the signer.
The latter requires the authentication of the developer before
signing the data using the private key of the OEMs tied
to a certificate authority. However, the procedure could be
vulnerable to various threats. For instance, it is likely that
the signed version of the firmware contains a malicious code
embedded in it through an insider attack, the theft or leakage
of private signing keys, which will result in compromising the
software supply chain of the OEM in a similar manner to what
happened during the notorious SolarWinds attack [32].

As for DERs’ standards, the IEEE 1547 [2] recognizes
that cyber-security is a critical concern while considering
DERs connected to larger monitoring and control systems
associated to the electricity grid, without directly addressing
this challenge. Nonetheless, the working group is currently
drafting a guide for DERs cyber-security, i.e., IEEE P1547.3
[33], which touches on the requirements for patching their
IoT-enabled devices. Meanwhile, the UL 1741 standard [34]
addresses the requirements for inverters as part of the in-
terconnection systems used with DERs; however, with no
explicit details regarding the security aspect. Nevertheless, the
UL recently announced that they are working jointly with
the U.S. Department of Energy’s National Renewable Energy
Laboratory on a cyber-security certification standard for DERs
that also addresses firmware updates of SIs [35], which again
demonstrates the criticality of this matter.

Thus, by taking into account the discussed standards and
their relevant requirements in terms of DERs’ firmware se-
curity (in particular residential SIs) we design our framework
not only in a way that incorporates the identified best practices
and recommendations derived but also addresses some of the
limitations of current practices. Fig. 2 represents a high-level
representation of our framework, which can be abstracted into

two major components, (i) the blockchain network and (ii)
the distributed shared storage. Further, the blockchain network
can be divided into two sub-layers as it is a combination of
lightweight nodes (i.e., SIs) and full nodes (i.e., TSOs, DSOs
and OEMs). These nodes all have different access rules and
privileges, which are defined in the SCs developed. We note
that the in-depth details of the proposed architecture model
and SCs would be further discussed in Section III and IV.

III. PROBLEM FORMALIZATION

In this section, we present the system model, the plausible
threats as well as the design goals of RASSIFAB.

A. System Model

The architecture design of our proposed FOTA framework
is illustrated in Fig. 3, which can be divided into three main
different components. Namely, (i) the SG physical layer which
represents the actual edge devices of the LV network (in this
case SIs), (ii) the cyber-blockchain layer encompassing the
various entities part of the P2P network as well as the SCs
defining all data structures, metadata, functions and modifiers
detailing the access control rules and policies of RASSIFAB,
(iii) the distributed consortium firmware file-sharing system.
Hereafter, we introduce the various stakeholders part of the
framework and detail their responsibilities.

Low

Voltage

Smart Solar

Inverter

Smart Grid

Physical Layer

Cyber-Blockchain

Layer

Peer-to-Peer

Firmware

Sharing

Network

High Voltage

(TSO)
Medium Voltage

(DSO)

Secondary

Substation

Secondary

Substation

LV Blockchain Zone

E
nc

ry
pt

ed
 f
ir

m
w

ar
e

im
ag

e
fil

es

𝑨𝑵𝟐

𝑶𝑬𝑴𝟏𝑵𝟏

𝑶𝑬𝑴𝟏𝑵𝟐
𝑶𝑬𝑴𝟐𝑵𝟐

𝑶𝑬𝑴𝟐𝑵𝟏

𝑶𝑬𝑴𝒏𝑵𝟏
𝑶𝑬𝑴𝒏𝑵𝟐

𝑨𝑵𝟏

𝑺𝑰𝑪𝑵𝟐

𝑺𝑰𝑪𝑵𝒏

𝑺𝑰𝑪𝑵𝟏

𝑫𝑬𝑹𝑨𝟐𝑵𝟏

𝑫𝑬𝑹𝑨𝟐𝑵𝟐

𝑫𝑬𝑹𝑨𝟏𝑵𝟏
𝑨𝑵𝒏

𝑺𝑰𝑪𝑵𝟑

𝑫𝑬𝑹𝑨𝒏𝑵𝟏

Primary

Substation

Fig. 3: Detailed architecture design of RASSIFAB.

1) Transmission System Operators: In the context of the
electrical grid, a TSO is an entity delegated with the task
of transmitting electrical power from generation plants to the
distribution networks in various regions. In our framework,
the TSOs being the highest authority in a power grid op-
erational system, are delegated with the administrative tasks
and workflows of setting up the blockchain-based ecosystem.
They are responsible for managing the administrator nodes
(ANs) part of the blockchain framework, which are in charge
of the first deployment of the SCs to the consortium blockchain
network as well as the execution of certain functions during
the initialization phase of the system (which will be detailed
in Subsection IV-A). Besides, the framework is based on the
idea of splitting the LV network of the power grid into sev-
eral semi-independent blockchain zones (BZs) geographically

distributed. Thus, we assume that each zone would fall into
the control of one single TSO, which will be responsible for
managing a set of ANs.

2) Distribution System Operators: The DSOs are the en-
tities operating the distribution networks, whose role was
limited to supply electricity to end consumers. However,
with the proliferation of DERs and the introduction of a
bi-directional flow of energy. DSOs are shifting from their
traditional tasks to a more smart and intelligent control, by
deploying DERs aggregator nodes (DERANs) with DERMSs
to control these renewable resources dispatched across the LV
networks. The DSOs first relied on smart meters for data
collection, however, with the introduction of SIs those are
also being leveraged to monitor the state of the LV network
and coordinate the multiple DERs at the edge of the SG. In
addition, these SIs within residential areas are connected to
the grid and support ancillary services. Hence, maintaining an
immutable inventory list of these intelligent devices as well
as keeping track of their firmware updates is of tremendous
criticality from the viewpoint of a DSO. This would ensure the
security and reliability of the measurements collected and also
protect these devices from being hacked or compromised, e.g.,
firmware downgrade attacks or reverse engineering that would
alter their normal operation. In our proposed scheme, each
BZ, depending on its location and size (e.g., neighbourhood,
district, city, etc.), would be supervised by either a single
or multiple DSOs responsible for managing their respective
DERANs in the blockchain framework.

3) Original Equipment Manufacturers: Typically, the LV
network within residential areas is characterized by its hetero-
geneity in regard to the OEMs from which the SIs installed
are originating. In fact, it is no surprise that each household
would invest in a different inverter based on costs or personal
preferences and those would widely differ from one prosumer
to another. Meanwhile, each OEM is responsible for issuing
firmware updates and/or patches to its proprietary devices
(i.e., SIs in this particular case) to guarantee their normal and
correct behaviour as well as cyber-security. In our scheme,
and by taking into account the heterogeneity aspect of the
SIs within this ecosystem, each BZ would encompass a set of
various OEMs labelled as OEM in which each manufacturer
is denoted as OEMi with i ∈ {1, ..., |OEM |}. Whereas, each
OEMi is responsible for a set of blockchain nodes labelled
as OEMiN in which each manufacturer node is denoted
as OEMiNj with j ∈ {1, ..., |OEMiN |}. In addition, our
scheme is also leveraging a distributed consortium file-sharing
system based on the IPFS. Where for each OEM a number
of blockchain nodes are also designated as the IPFS storage
nodes.

4) Prosumers: In our framework, each residential prosumer
is supposed to have an SI connected to its household’s solar
panel. As SIs are characterized by limited computation and
storage capacities, they are part of the blockchain frame-
work as light nodes in contrast to the aforementioned nodes.
Basically, they neither store a full copy of the distributed
blockchain ledger nor participate in the consensus to create
blocks. However, they keep track of the headers of each block
which contain the Merkle roots of a given transaction pool.

Thus, allowing them to verify the credibility of a transaction
by mounting its hash until reaching the root of the Merkle tree
of the block containing that specific transaction. In addition,
the SIs client nodes (SICNs) are also running an IPFS client
node that allows them to download the firmware files from the
distributed storage system.

Meanwhile, it’s worth stressing that configuring a
blockchain node using the existing SIs’ hardware or software
might be challenging due to some dependencies’ issues. Thus,
it’s possible to have those SIs linked, using an Ethernet
connection, to a designed system on-chip blockchain unit
built using a Raspberry Pi for instance, that would host the
blockchain-based capabilities defined in our scheme as well as
the IPFS client. However, we should specify that the technical
details and implementation of this fall beyond the scope of
this paper and could be the focus of future work.

B. Threat Model

The aim of this subsection is to identify the threats from
which FOTA updates in the case of SIs are vulnerable to
and eventually derive the security requirements and goals that
must be satisfied. The threat model upon which RASSIFAB
is built is following the S.T.R.I.D.E. approach [36], which
divides security risk into six main classes (C), i.e., Spoofing
of identity (targeting authentication, denoted later as C1),
Tampering with data (against integrity, denoted later as C2),
Repudiation (affecting accountability, denoted later as C3),
Information leakage (disturbing confidentiality, denoted later
as C4), Denial of service (influencing availability, denoted
later as C5) and finally Escalation of privilege (hindering
authorization, denoted later as C6). In what follows, we detail
the various security threats and attacks that could be exploited
during the procedure of amending SIs’ firmware and we also
indicate under which class of the S.T.R.I.D.E. model they fall.

1) Firmware Downgrade Attack [C5, C6]: In this scenario,
an attacker tries to push an old, but correct firmware to the SI
with a valid signature from the OEM. Suppose that particular
version of the firmware is known to contain a vulnerability; the
attacker can then try exploiting it by opening a backdoor that
may eventually allow him to gain full control over the SI with
the right escalation of privilege. Therefore, the attacker can
disconnect all inverters that have been a target of this attack,
causing a denial of service (DoS) attack.

2) Firmware Mismatch Attack [C5]: In this attack the
malicious user tries to send a valid firmware but for a different
device; for instance it could be a firmware of a smart meter
sent to an SI from the same vendor. If the device does
not require a rigorous check of the firmware file, then the
update is most likely to be accepted as its code signature
is valid. The impact of such attack on SIs can scale from
minor misbehaviour or abnormal functioning of the inverters
to rendering the devices totally inoperable. In fact, this type of
attack has been reported recently, due to a human error, where
an employee entered the wrong identifier of the devices to be
updated, leading to a mismatched firmware being sent to mul-
tiple microwaves causing them to crash and stop functioning
[37]. Thus, it is also important to incorporate the risk of human

error in our proposed scheme and mandate the verification of
the FOTA updates by various authorized authors to minimize
the likelihood of this risk.

3) MitM or Redirection Attack [C2, C5]: If the transporta-
tion phase of the FOTA update is not properly configured and
secured, an attacker would be able to launch an MitM attack
by redirecting the SIs to download a malicious firmware file
from a corrupted server.

4) Firmware Reverse Engineering [C2, C4, C5, C6]: If the
firmware files are not properly encrypted, a malicious user
can easily have access to them. To then reverse engineer
those files introducing new vulnerabilities or backdoors to
fully gain remote control over the SIs capabilities. Thus,
the confidentiality of the firmware binary files should be
guaranteed.

5) Supply Chain Attack [C1 − C6]: In this scenario, the
attacker is able to infiltrate the OEM’s system and deploy
a malicious malware that would alter the firmware before
sending it to the end users. Besides, the attacker could also
hijack the account of one of the authors responsible for signing
the firmware package and use the leaked key to dispatch the
compromised firmware to the SIs [32].

C. Design Goals

Based on the aforementioned threats identified, this sub-
section presents the security goals (G) and requirements that
RASSIFAB must satisfy.

1) Authentication, Authorisation and Accountability [G1]:
These refer to a set of techniques utilized to regulate and
track access control within a system. In our proposed scheme,
first, authentication refers to the ability of authenticating both
the OEMs, sending the firmware with its metadata, as well
as the SIs devices. Second, authorization signifies that only
authorized entities can execute certain functionalities based
on their privilege and access rules defined. For instance,
an OEM B should not be allowed to send an update to
devices manufactured by OEM A. Last, transparency and
accountability are critical features that must be ensured in this
scenario (i.e., FOTA), as each update or patch sent must be
recorded in an immutable manner and verified by other entities
part of the framework based on their roles and affiliations.
If we consider the case of political cyber-attacks, an OEM
C of a given country could try to update specific devices
with a corrupted firmware. Thus, if the scheme is based on
a consortium blockchain involving various OEMs and other
stakeholders (i.e., TSOs and DSOs), the OEM C would be
unable to alter the shared copy of the ledger to hide all traces
of the attack, which would guarantee accountability.

2) Firmware Integrity and Non-Repudiation [G2]: The re-
liability of an FOTA update has to be provable, meaning
that the update must be signed with a digital signature (or
preferably multiple signatures to increase the resilience of the
procedure). Meanwhile, as the metadata of the update includes
some relevant information about the firmware, it should also
be authenticated. Thus, to minimize the effort of validating the
signatures of both the metadata and firmware itself, we opted
to tie both and include a digest or fingerprint (i.e., hash) of

DSO

Deploy SIsInit.sol
• Adds msg.sender

to list of ANs

Return(@ of SC)

addAdmin(@) • Require OnlybyAdmin()

• admins.push(@)

DERA/OEMInit(name)
• Require OnlybyAdmin()

• DERA/OEM.push(name)

DERAN/OEMNUpdate(@) • Require OnlybyAdmin()

• Checks if organization is registered

• DERA/OEM.add.push(@)

• Initializes OEMN reputation score

OEMSUpdate(name, serial) • Require OnlybyManuf()

• Checks if organization is registered

• OEM.Serials.push(serial)

addDevice(@, OEM, DSO, Serial, Type) • Require OnlybyDERMS()

• Checks association between

OEM and Serial

• Devices.push(input data) Event Device_added(ID of device)

Deploy SIsFirmware.sol

Return(@ of SC)

UpdateMap_DFW(ID, @, FW metadata)
• Require NotBlackListed()

• Checks association between

msg.sender and OEM of device

• Initializes firmware metadata

and list of OEM signers

1
.
D

ep
lo

ym
en

t
o

f
th

e

in
it

ia
liz

at
io

n
 s

m
ar

t

co
n

tr
ac

t

5
.
In

it
ia

liz
at

io
n

o
f

fi
rm

w
ar

e

m
et

ad
at

a

2
.
R

eg
is

tr
at

io
n

 o
f

th
e

T
S
O

 n
o

d
es

,
D

S
O

s

an
d

 O
E

M
s

3
.
R

eg
is

tr
at

io
n

o
f

th
e

d
ev

ic
es

4
.
D

ep
lo

ym
en

t

o
f

th
e

fi
rm

w
ar

e

sm
ar

t
co

n
tr

ac
t

Event Admin_added()

Event DERA/OEM_added()

Event DERAN/OEMN_added()

Event SerialNum_added()

Event Mapping_updated()

TSO Blockchain OEM

Transaction

Event

@: Blockchain address

Fig. 4: Initialization and registration phase workflow of RASSIFAB.

the binary image into the firmware metadata recorded on-chain
that would eventually be signed by the OEM’s authors.

3) Firmware Confidentiality [G3]: The binary image of the
firmware is required to be encrypted not only in order to
protect the proprietary content of the file, but also to stop
attackers from reading it and eventually reverse engineer it to
introduce some vulnerabilities.

4) Lightweight Security and Scalability [G4]: As SIs are
characterized by low computation as well as storage resources,
the proposed scheme should incorporate lightweight mecha-
nisms at the edge of the LV network. In addition, leveraging
blockchain would inevitably introduce some scalability issues
both in terms of transactions per second rate as well as
the ledger’s overhead. Thus, it is important to design the
architecture of the FOTA framework in a way that would
alleviate this burden and not over-stress the SIs, while at the
same time guaranteeing the level of security needed within
this heterogeneous ecosystem.

IV. PROPOSED RASSIFAB SCHEME

In this section, we discuss the workflow of our proposed
scheme by first detailing both the registration and initialization
phases to set up the blockchain system. We then present the
access control policies defined in the SCs and explain how the
firmware update procedure for SIs is performed.

A. Initialization and Registration

Before joining the consortium blockchain-based framework,
all participants are assumed to have generated locally their

respective blockchain keys following the elliptic curve digital
signature algorithm (ECDSA). These pairs of keys would
be used to sign and authenticate transactions sent to the
blockchain network as well as ensure the validation of all
blocks generated. Then, the blockchain addresses would be
derived from these public keys, which would serve as unique
identifiers for each of the nodes part of the framework in the
implementation of the distributed access control. Meanwhile,
the ANs, DERANs and OEMNs are considered to be under
the supervision of known organizations, hence, their public
keys can be distributed and verified by means of a certificate
authority for instance. For SIs, their public keys and addresses
generated by the prosumers would be communicated to the
DSOs and OEMs through secure channels for privacy and then
used during the initialization phase.

The initialization steps of our proposed blockchain-based
FOTA framework are illustrated in Fig. 4, which are divided
into five main sub-phases. The first sub-phase involves the
deployment of the SIsInit.sol† SC (which defines the structures
used to map all stakeholders, SI devices, their metadata
and access rules) to the blockchain network by one of the
TSO nodes (i.e., ANs) controlling a given BZ. If successful,
the defined list of ANs in the SC would be automatically
instantiated with the address of the node that deployed the
contract (i.e., msg.sender). In addition, this node would receive
the deployment address of the SC that would be eventually
shared with the rest of the participants and used to initiate all

†RASSIFAB source code. [Online]. Available at: https://github.com/
Raakk/RASSIFAB/

https://github.com/Raakk/RASSIFAB/
https://github.com/Raakk/RASSIFAB/

interactions with the functions defined within the contract as
well as access its associated storage.

Send Firmware Update

Is the
msg.sender

blacklisted or
has already

signed

Is the
msg.sender’s

OEM the
same as the

device

Is the
firmware’s

new version ≤
previous
version

Is the device’s
signers.list

empty

Are the
provided inputs

= on-chain
temporary
metadata

Deduct msg.sender’s
reputation score

Is the
msg.sender’s

reputation < ρ𝑇

Add msg.sender
to the blacklist

Initialize temporary
metadata and push the
msg.sender’s address to

the signers’ list

Did the
majority of the
device's OEM

nodes sign

Download
firmware file
from received

IPFS link,
decrypt it using
secret key and

recalculate hash

Is
calculated

firmware hash
= received

hash

Install new firmware
& reboot the device

Delete
binary file

Off-chain

On-chain

Yes

No

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Emit new firmware
update event to
notify the device

Start/End Input/Output Process Decision

Start

End

Transaction failed

Push msg.sender
to signers.list

Fig. 5: Flowchart of the proposed blockchain-based FOTA
update scheme.

The second sub-phase involves adding the various nodes
part of the blockchain framework. In fact, for the sake of
cyber-security and resilience, the contract enables updating
the list of ANs, so that in case one is offline or faulty,
others can still operate the system and ensure its continuity.
Meanwhile, the DERAs and OEMs are also registered to
the framework using DERAInit() and OEMInit() (which are
functions that take as input the names of each entity, converted
to bytes8 type for optimization purposes, serving as unique
identifiers for the implementation of the access rules). Whereas
DERANUpdate() and OEMUpdate() are functions used to
register the blockchain addresses of both the DERA and OEM

nodes respectively while mapping them to their respective
organizations. It is worth noting that these functions can only
be executed by an AN leveraging the onlyByAdmin() modifier
defined in SIsInit.sol.

The third sub-phase is focused on adding the multiple SIs
to the consortium blockchain system. It starts by updating
the list of the devices’ serial numbers by each of the OEMs
using the OEMSUpdate() function. Those serials would be
later used to bind the devices with their respective OEM using
the addDevice() function which returns a unique Id of the
SI. The latter function is used to register the devices on-
chain by inputting their metadata, i.e., blockchain address,
the OEM who fabricated the device, the DSO managing the
grid zone to which the SI is connected, the unique serial
number of the device and its type. We should note that we
included a variable to register the type of the device in order to
guarantee the future extensibility of the scheme proposed here
to encompass other devices such as smart meters, sensors, etc.
Both functions mentioned are restricted using the verifyOEM()
and onlyByDERMS() modifiers respectively.

Then, the fourth sub-phase starts by deploying the SIs-
Firmware.sol contract (that inherits the first one), which is
used for issuing firmware updates and/or patches requests to
the SIs. Similarly, the address of the SC is also broadcasted
among all participants after its deployment. Then, the last sub-
phase is mapping the already added devices in the previous
contract with their current firmware metadata (i.e., version
and hash of the installed firmware as well as the IPFS link
from where the file could be recovered if needed) using the
UpdateMapp DFW() function. It should be noted that this
function can only be executed by one of the OEM nodes of
the SI by checking the association between the msg.sender
and the OEM of the device using the checkManuf() modifier.

Meanwhile, each OEMiNj has a reputation score denoted
as ρ encoded within the SIsInit.sol SC, with a value that ranges
from 0 to 5. In fact, during the initialization phase performed
by the ANs, each OEMiNj is assigned with an initial rep-
utation score denoted as ρ0 above the trust threshold of the
system denoted as ρT , meaning that ρ0 > ρT , as these nodes
are assumed to be semi-trusted. Then, based on the historical
behaviour of these manufacturer nodes within the framework,
their reputation can be deducted if they misbehaved at any
given round, where OEMiNj .ρtime = OEMiNj .ρtime−1−δ,
with δ being fixed at 1. Specifically, misbehaviour in our
scheme is defined as sending a firmware update or patch
transaction containing compromised metadata (i.e., wrong
hash of the binary file or associated IPFS path) which will be
detailed in the following subsection. Moreover, this reputation
is used to revoke the nodes’ access to the framework (in terms
of sending transactions) once their score falls below ρT .

B. Firmware Update Procedure

The process of sending a firmware update to an SI belonging
to OEMi for instance, is depicted in Fig. 5, which is encoded
in the sendFWupdate() function of the SIsFirmware.sol SC.
Before the transaction gets to trigger the execution of the
actual body of this function, certain requirements need to be

fulfilled (which are defined within the contract’s modifiers).
First, the node sending this transaction, being OEMi′Nj,
shouldn’t be blacklisted (i.e., OEMi′Nj.ρ > ρT) and that the
msg.sender address needs to satisfy the following condition
OEMi′Nj ∈ OEMiN i.e., i′ == i. If any of these conditions
is not satisfied the transaction would fail with a message error
depending on which requirement wasn’t met. Then, as this
is an update rather than a patch, the version of the firmware
must be higher than the one recorded on-chain (i.e., the current
version installed on the device) for the transaction to be valid.
The next step of the procedure is to check the SI’s signers list,
which is used to guarantee the BFT nature of the procedure.

If the signers’ list is empty, then the temporary fields for
the firmware metadata are initialized and OEMi′Nj is pushed
into the list. Meanwhile, in case the list is not empty, the
function checks whether the provided metadata are equal to
the registered ones. If there is a mismatch between any of
the new input data, OEMi′Nj.ρ would be deducted by δ
and if the reputation is below ρT the node is automatically
added to the blacklist and the transaction would fail. However,
if the provided metadata are correct, the function checks if
the majority of the nodes belonging to the SI’s OEM have
endorsed the same firmware metadata. Only then an event (i.e.,
New Firmware Update()) would be triggered automatically
containing the new firmware metadata and the address of the
device that requires an update. Meanwhile, if the metadata
was not validated by the majority, the device would wait for
the other OEM nodes. We note that the device’s address is
defined as an indexed parameter, thus, allowing to leverage
event listeners within scripts that would use this value. For
instance, each SICN would listen to this event and get a
notification only if the address mentioned in the event matches
its own unique blockchain address.

After receiving the firmware metadata from the blockchain
(i.e., hash of the firmware, IPFS link, encrypted blockchain
secret key denoted as SChain

key and version). The SICN starts
by decrypting SChain

key using its own AES-256 pre-set key
(e.g., embedded during the manufacturing process of the
device). The obtained key is used to decrypt the firmware file
downloaded from the IPFS link received, then the hash of
the file is calculated. If the obtained hash is not the same as
the one received from the blockchain, the file is then deleted,
otherwise the new binary file would be installed and the SI
would re-boot. We should note that we used this approach
as the binary files are supposed to be encrypted before being
pinned to the IPFS by the OEMs before starting an update
request on the blockchain framework. Suppose that for each
device its firmware was encrypted using a unique key this
would result in a storage overhead in terms of duplicated files.
In fact, devices belonging to the same OEM and which are also
the same model would have the exact same firmware. Thus,
the file is encrypted with a single key (for the same set of
devices) and this key is in turn encrypted using each of those
devices’ unique keys. The cyphered key is then sent through
the blockchain as part of the firmware metadata.

V. IMPLEMENTATION AND ANALYSIS

Our proposed framework was implemented on a blockchain
test network using Geth, being the Go implementation of
Ethereum. The network was deployed on four Ubuntu virtual
machines (located on different physical hosts) each with
four vCPUs and 16GB of RAM. The machines were then
partitioned into multiple virtual Ethereum nodes with several
accounts to emulate all entities of the system as illustrated in
Fig. 6. Besides, the consensus we have opted to leverage is
Clique which is a variation of PoA. The consensus has been
extensively utilized within industrial blockchains [38], [39]
due to its higher performance [40]. Whereas the configuration
of the blockchain network (i.e., block zero) can be found in the
Genesis.json file with the source code. We also used Node.js
and Web3.js libraries for the scripts detailing the interaction
scenarios with the blockchain-based framework and SCs.

Bootnode

TSO

𝑂𝐸𝑀5

DSO

𝑂𝐸𝑀3

𝑂𝐸𝑀1

𝑂𝐸𝑀2

𝑂𝐸𝑀4

Devices

Crof22 Crof16 Crof19 Crof21

Machine 1 Machine 2 Machine 3 Machine 4

Fig. 6: Proposed RASSIFAB implementation using Ethereum.

A. Performance Evaluation

The evaluation of our proposed scheme in terms of per-
formance focuses on three main aspects: (i) the overhead
introduced by the adoption of blockchain in terms of execution
cost, (ii) the scalability of the blockchain ledger with a growing
number of devices, and (iii) the run-time overhead associated
to the additional utilized security mechanisms in RASSIFAB
compared to a centralized scheme.

1) Execution and Communication Costs of the Initialization
Phase: In order to assess the time required for setting up the
framework (i.e., initialization and registration phase), we have
tested the execution time (or cost) of various functions defined
in the initialization SC developed with different workloads.
We note that the execution time of a transaction trigger-
ing a function in the contract is defined as: Texecution =
Tconfirmation − Tdeployment. Starting with adding the ANs
to the system (i.e., TSO nodes), the obtained results in Table.
I indicate that it takes roughly 104.345ms to add five ANs.
Meanwhile, the initialization of the set of DSOs and OEMs
takes 67.43ms and 99.92ms for adding three DSOs and five
OEMs respectively to the blockchain network. Whereas the
registration step of the nodes is conducted by adding ten
DERANs and OEMNs for each of the added organizations
(i.e., a total of 80 nodes), which requires 697.883ms and
1.170s respectively.

Furthermore, the execution time of the registration phase
of the devices (i.e., SIs) is also included in Table. I. The
procedure starts with updating the unique serial numbers of
each SI part of the framework, which takes around 1.184s

TABLE I: Test results of RASSIFAB SCs deployment, initial-
ization and registration phase.

Functions

N
um

be
r

E
xe

c.
tim

e
[s

]

C
ha

in
da

ta
[k

B
]

Registration of TSO nodes 5 0.104 6
Initialization of DSOs 3 0.067 3
Initialization of OEMs 5 0.099 6
Registration of DSOs nodes 10 0.697 27
Registration of OEMs nodes 10 1.170 41
Initialization of serial numbers 50 1.184 51
Registration of devices 50 1.220 52
Initialization of firmware metadata 50 1.246 71

Deployment time of SIsInit.sol: 23.957ms
Deployment time of SIsFirmware.sol: 24.643ms

for ten devices per manufacturer (i.e., a total of 50 devices).
Then, adding the blockchain addresses of the SIs and their
respective associations to both the DSOs and OEMs requires
1.22s. Finally, updating the mapping between the devices and
their respective firmware metadata on-chain (i.e., the currently
installed version on the SIs) is performed in 1.246s.

Meanwhile, the communication cost of the scheme, which
indicates the growth of the size of the chaindata as transactions
are being added to the blockchain ledger was also evaluated.
For instance, the registration of the DERANs and OEMNs
takes 27kB and 41kB for each. Whereas the registration of the
devices (i.e., addresses, serials and their firmware metadata)
takes a total average of 174kB.

2) Execution Time of Sending Firmware Updates: The exe-
cution time of sending firmware updates to the devices within
a single BZ, depicted in Fig. 7a, was evaluated under three
different scenarios. The first use case involves one single OEM
part of the framework with four nodes (i.e., |OEM | = 1 and
|OEMiN | = 4). In the second case, we also have one OEM
but with ten nodes (i.e., |OEM | = 1 and |OEMiN | = 10).
Whereas in the third case, the number of OEMs was set at
five and to each four nodes were allocated (i.e., |OEM | = 5
and |OEMiN | = 4, thus

∑5
i=1

∑4
j=1 OEMiNj = 20). It

is important to note that we only present the evaluation of
sending firmware updates here. Nonetheless, sending patches
is roughly similar with the only exception regarding the
requirement for the version number of the firmware within
the metadata.

Starting with Case I, the initial number of SIs was set at
20 and scaled to reach 100 devices that should be updated
simultaneously. We should note that this number of devices
represents the SIs within a single BZ, and as we mentioned
previously, the whole LV network is divided into several
zones, thus the total number of devices would be above
100. From Fig. 7a, it can be observed that the time required
for sending and validating the firmware update metadata on-
chain for all cases is increasing with the number of devices
which is quite expected. As more concurrent transactions are
deployed to the blockchain, thus requiring more time to be

confirmed, however, it’s worth noting that the increase is
linear and moderate. Meanwhile, the execution time of Case
II is noticeably higher compared to the other cases, which
is due to the number of OEM nodes per manufacturer. The
proposed scheme, as discussed previously, relies on a voting-
like mechanism over the sent FOTA update metadata. Thus,
in order to issue an event indicating that a new firmware is
released, the metadata should be signed by at least six nodes in
Case II, compared to three nodes for the remaining cases (i.e.,
Case I and Case III). Nonetheless, the overhead introduced
by blockchain in our proposed scheme for sending a firmware
update request to a single device is around 1.093s (in Case I
with at least three validating nodes), which is lower than the
overhead in Hu et al. scheme [41] with an execution time of
roughly 1.3s using one single validating node.

3) Ledger Overhead with Sending Firmware Updates: The
scalability of the chain size was also assessed as the number of
SIs part of the system is increasing. From the obtained results
depicted in Fig. 7b, it can be observed that the ledger size
increases as more transactions are added to the blockchain,
yet the increase is following a linear trend also. For instance,
sending a firmware update to 100 devices in Case I adds
roughly 289Kb to the chain, whereas in Case II the ledger
increases by 935Kb. It is worth stressing that the size of the
ledger would grow in a moderate way, due to only saving
the metadata of the firmware rather than the actual binary
files, which are stored off-chain. In addition, the procedure of
updating SIs is characterized by a low recurrence as typically
a device can be expected to receive a firmware update twice
a year on average. Thus, justifying the use of blockchain for
keeping an immutable record of these security updates for
future forensic analysis or security audits.

4) IPFS, Encryption and Hash Run-Time Overheads: The
aim here is to evaluate the overhead introduced by all the
mechanisms leveraged in our scheme compared to a cen-
tralized approach using the OEM’s cloud servers with no
requirements for files’ encryption. If we consider a firmware
binary image or file with a size equal to 16MB, it would
take approximately an extra 12s to download the encrypted
firmware from the IPFS, compared to using an HTTP server,
following the benchmark provided in [42]. Then, 0.93s to
decrypt it using AES-256 and 1.12s to calculate the hash
of the file using SHA-256, based on the benchmark con-
ducted on a Raspberry Pi 3 model B, provided in [43].
Meanwhile, the time required to decrypt SChain

key and compare
the hashes are assumed to be negligible. Thus, the proposed
scheme is expected to have an average run-time overhead
of 15.143s, which is within an acceptable range taking into
account the new features introduced that harness the cyber-
security and resilience of the scheme. Besides, the procedure
of firmware amendments is moderately sensitive to latency as
it’s vulnerable to ”zero-day” attacks. In Fig. 7c, we provide a
pie-chart representing the average sum of RASSIFAB’s run-
time overhead that illustrates the various percentages of each
additional technique utilized in our scheme.

0

50

100

150

200

250

300

350

400

20 device 40 device 60 device 80 device 100 device

E
xe

cu
ti

o
n

 T
im

e
[s

]

Number of Devices

Firmware Update - Execution Time

Case I

Case II

Case III

(a) Execution time.

0

100

200

300

400

500

600

700

800

900

1000

20 device 40 device 60 device 80 device 100 device

D
at

ac
h

ai
n

 S
iz

e
[K

b
]

Number of devices

Firmware Update - Chain size

Case I

Case II

Case III

(b) Ledger scalability.

6%

8%

7%

79%

RASSIFAB Overhead

File decryption Hash calculation

Blockchain requests IPFS read request

(c) Run-time overhead.

Fig. 7: Performance analysis of sending firmware updates using RASSIFAB.

Fig. 8: Snapshot of sending a firmware update with no attacks.

B. Security Properties

In this subsection, we detail the various security features
provided by RASSIFAB and discuss how they meet the goals
defined in Subsection III-C with some test results.

1) Intrusion Prevention [G1]: Fig. 8 represents the pro-
cedure of sending a firmware update (Case III) under no
attack to an SI that belongs to OEM2. In order for the
update request to be successful, the majority of the nodes
(i.e., OEM2N1, OEM2N2 and OEM2N3 located in machine
3) need to send a transaction containing the metadata of
the firmware. This procedure is depicted in the blue box of
the figure, that represents the execution of three scripts to
send a firmware update request from the OEM blockchain
nodes. Only then would an event containing the new firmware
metadata be automatically triggered at the SICN (located in
machine 4) as illustrated in the green box of the figure. Our
proposed scheme is capable of detecting various intrusion
attacks that deviate from this detailed (normal) behaviour,
such as firmware downgrade attacks, unauthorized access or
malicious insiders in a fine-grained manner by triggering an
exception sent to the blockchain nodes (e.g., ANs or OEMNs).

If we consider the attack scenario of a firmware downgrade
attack, previously defined in Subsection III-B. For each request
sent using the sendFWupdate() function the version of the
firmware is required as input. Then, the body of the func-
tion runs an autonomous check to verify that the provided
version is higher than the previous one, which is recorded
on-chain as part of the SIs’ firmware metadata during the
initialization phase. In the developed SC we used semantic
versioning, a widely adopted version scheme based on three-
part version number, where the first number indicates a major

version change, the second for a minor and the third for
patches. These numbers are assigned in increasing order
and correspond to new developments in the firmware. An
example of a firmware’s version would be 1.7.23, which is
converted into an array to be recorded on-chain as part of
the firmware metadata. Suppose an attacker tries sending an
old version of the firmware, the transaction will be reverted
with an error message because it won’t pass the predefined
requirements of the function, as illustrated in Fig. 9 (i.e., blue
box). The figure represents a snapshot of the execution of
a script detailing an attack scenario in which an OEM node
sends a request for an update with version 1.25.4, while the
current firmware’s version of the device is recorded as 1.27.3
on-chain. Nonetheless, it is possible that the attacker might
input a higher version to bypass this check while the actual
firmware is an old version. Still, the request won’t be sent
to the SICN as the metadata (i.e., firmware hash and IPFS
path) need to be validated by the majority of the OEMNs,
i.e., SICN.Signerslenght > |OEMiN |/2 + 1, which is
impossible under the assumption of having the majority not
malicious.

Fig. 9: Snapshots of two attack scenarios (i.e., downgrade
attack and unauthorized access).

Meanwhile, if OEMiNj tries sending a firmware update
to a device belonging to OEMi′ with i ̸= i′ (i.e., firmware
mismatch attack), the transaction will be reverted with the
error message: ”Unauthorized access!”, as illustrated in Fig.
9 (i.e., the green box). The function requires the msg.sender to
belong to the same organization as the device, this is achieved
through the access control scheme we implemented in our
proposed SCs. Another occurrence of this attack could be
from the same OEM but for different models or types of
devices, which could be due to an honest human error [37] or
a malicious insider. In this case, as the new metadata need to
be validated following a BFT protocol, the rest of the OEM
nodes would notice this faulty update through logging and

blockchain’s events monitoring as illustrated in Fig. 10 (i.e.,
the grey box). Thus, the tampered metadata would never reach
the SICN as it won’t be validated by the rest of the legitimate
OEM nodes, eventually protecting the device.

2) Firmware Integrity and Confidentiality [G2 and G3]:
The integrity of the firmware means that it has not been
tampered with during all steps of the FOTA procedure. In
our scheme, we guarantee this feature by including the hashes
of the binary files as well as the IPFS paths as part of
the firmware metadata, which are recorded on the shared
blockchain ledger among all entities part of the ecosystem.
Due to the strong coalition resistance of hash functions, it
would be impossible for an attacker to calculate the same
hash for different files. Besides, the IPFS links are based
on content identifiers (CID), where the link would have the
following format: ipfs : // < CID > /Path/file. The CIDs
are derived from the files’ content hashes, thus any alteration
of the content will produce a different CID, thus, a different
path [15]. Suppose an adversary tries launching an MitM or
redirection attack, the attacker would be unable to produce a
different file with the same CID in the IPFS as illustrated in
Fig. 10. This also applies to the case of a software supply
chain attack where an adversary that was able to get access to
the account of one of the OEMNs (e.g., through a leaked key
or a malicious insider) is trying to send an update containing
a malware similarly to SolarWinds attack. In this scenario,
the attacker would be unable to generate a legitimate CID
and hash of the corrupted firmware file. Besides, as the rest
of the OEM nodes are (i) assumed to be honest (i.e., at least
the majority), (ii) their accounts and blockchain keys were not
leaked, and (iii) the update requests in our scheme are required
to be validated following a BFT manner, the attempted attack
would be detected and the update request would fail.

Further, as the firmware metadata are recorded in an im-
mutable and distributed manner this enables the devices to
check frequently whether their firmware hasn’t been mali-
ciously modified (e.g., in case of a physical attack). Mean-
while, as the proposed framework is based on a consortium
blockchain and due to the transparency feature of the dis-
tributed system, the actual firmware files are encrypted before
being pinned to the shared IPFS-based P2P network. Thus,
guaranteeing the confidentiality of the firmware and protecting
it from being leveraged for reverse engineering attacks.

Fig. 10: Snapshot of an insider attack scenario being detected.

3) Lightweight and Scalable FOTA [G4]: The proposed
scheme alleviates the SICNs (considered as IoT devices
with constrained capacities) from the burden of verifying
each OEMN’s signature while sending a firmware update.

As this is encoded within the proposed SIsFirmware.sol SC
and is executed automatically through the defined modifiers
each time on-chain. Furthermore, the firmware binary images
are encrypted using symmetric cryptography (i.e., AES-256),
which has less computation overhead compared to asymmetric
cryptography while still being fairly secure, fast and efficient.

Meanwhile, the scalability of the blockchain-based scheme
is guaranteed by means of two approaches we adopted.
The first is splitting the overall network of SIs into semi-
independent zones, where each BZ would be responsible
for processing a fraction of the transactional firmware up-
dates/patches requests. Thus, increasing the overall throughput
(through parallel processing) and minimizing the size of
the light chain stored within the constrained SI devices for
verification. Whereas the second approach achieves scalability
by offloading the storage to the IPFS rather than keeping the
actual firmware files within the blockchain network. It is also
worth stressing that in our scheme we advise the use of an
external shared P2P storage system for the firmware binary
files. Nonetheless, RASSIFAB can still function using only
the blockchain layer to keep an immutable record of the sent
FOTA requests for updates.

VI. RELATED WORK AND DISCUSSION

In this section, we discuss various research outputs in
the literature that addressed the security concerns of FOTA
amendments. By either relying on the traditional client-server
model and enhancing it by leveraging strong cryptographic
techniques as well as hardware-based mechanisms, or totally
shifting to a distributed scheme by utilizing blockchain due to
its immutability and inherent cyber-resilience. We also detail
the limitations of our proposed blockchain-based framework.
Furthermore, Table. II represents a comparison between the
discussed schemes and RASSIFAB in terms of various char-
acteristics.

A. Centralized Hardware-Assisted Schemes

The procedure of remotely updating and/or patching
firmware conventionally relies on a client-server architecture.
Where the devices would either receive or retrieve the newly
released firmware from the cloud server managed by the OEM
of the IoT device. Several approaches in the literature have
been proposed to secure this procedure by leveraging various
cryptographic and/or hardware-assisted mechanisms. For in-
stance, the authors in [44] introduced sCAN a secure scheme
against cyber-attacks targeting the CAN protocol utilized
within vehicle networks, specifically against firmware reverse
engineering attacks during FOTA, by means of additional
signed metadata of the firmware and timestamps. The transfer
of the firmware is based on a multi-frame process, where
the firmware file is divided into chunks that are verified by
utilizing a cyclic redundancy check algorithm (i.e., checksum).
Nonetheless, the proposed scheme still relies on the OEM’s
centralized cloud server to download the firmware files which
might be the target of a malware injection attack. In addition,
checksums do not necessarily guarantee the authenticity of

TABLE II: Comparison between RASSIFAB and other
firmware amendment schemes.

Ref.

B
lo

ck
ch

ai
n-

ba
se

d

H
et

er
og

en
eo

us

B
FT

V
er

ifi
ca

tio
n

D
is

tr
ib

ut
ed

R
ep

os
ito

ry

R
ep

ut
at

io
n

ASSURED [45] × × × × ×
SecuCode [46] × × × × ×
Lee and Lee [49] ✓ × – ✓ ×
Hu et al. [41] ✓ × × ✓ ×
Yohan and Lo [48] ✓ ✓ × × ×
Choi and Lee [50] ✓ ✓ × ✓ ×
BoSMoS [51] ✓ × × × ×
RASSIFAB ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

✓: Satisfied ×: Unsatisfied –: Partially

the firmware as an insider attacker can change the data and
recalculate the checksum to bypass the verification.

Meanwhile, ASSURED [45] is an architecture for firmware
updates that guarantees end-to-end security between the OEMs
and the embedded IoT devices. The proposed framework
introduces a controller (intermediary between the OEM and
devices) responsible for approving the firmware metadata and
transmitting the update envelope to the devices using an
authenticated channel. However, the scheme relies on a static
root-of-trust, i.e., the OEM and controller keys. Furthermore,
in [46], the authors present SecuCode a secure wireless code
dissemination scheme for computational radio frequency iden-
tification devices, which is built on the entanglement of a static
random access memory PUF with a firmware update protocol.
However, the scheme does not guarantee mutual authentication
and is relying on a prover centralized database, initialized in
a secure environment, which contains the IDs of the devices
and their challenge-response pairs from the PUF.

Then, Rabbani et al. presented SHeFU [47], a secure
firmware update for a homogenous network of IoT devices,
that eliminates the requirement for remote attestation. Where
malicious devices that have been compromised by a faulty
update are isolated from the rest of the network. Specifically,
each device is responsible for calculating a firmware digest
and upon the communication between the devices, each one
would calculate a message authentication code for validation.
However, the authors did not specify how the devices agree
on which digest is legitimate. Moreover, the network owner
in charge of monitoring the devices is assumed to be fully
trusted and that it can’t be compromised, hence, limiting the
security of the scheme.

B. Distributed Blockchain-Enabled Schemes

In an attempt to address the flaws within the conventional
client-server based schemes for FOTA, several researchers
harnessed the potential of blockchain technology. For instance,
in [48], Yohan and Lo proposed a blockchain-based scheme
to guarantee the authenticity and integrity of FOTA updates
within a heterogeneous IoT devices network. The procedure

follows a push approach and can be performed either directly
or indirectly. In the direct FOTA mechanism, vendors create
and deploy the corresponding SCs to the blockchain network
for each firmware update. Whereas the indirect scheme intro-
duces a firmware broker that serves as an intermediary between
the vendor and the targeted IoT devices. However, the scheme
still relies on the centralized repositories of either the vendor
or the broker. In addition, after downloading the firmware,
there is no mechanism implemented to verify that the file or
image was not compromised during the transfer. Furthermore,
the scheme requires that each firmware update should be
associated with a newly deployed SC to the blockchain, which
is not sustainable taking into account the ledger scalability and
overhead introduced over the long run.

Meanwhile, in the blockchain-based scheme proposed by
Lee and Lee [49], embedded devices request their firmware
updates to the P2P network, to get a response checking
whether the firmware is up-to-date. The framework is based
on three types of nodes, i.e., normal nodes, verification nodes
and a vendor node (which is outside the blockchain system
but used by the verification nodes in order to provide the
file updates). Normal nodes can be either request or response
nodes. The procedure starts by having a normal node sending
a version-check request, broadcasted to the whole network,
and depending on the node receiving the request the scheme
follows different verification steps. However, the procedure is
tailored for homogenous IoT-based networks belonging to the
same vendor, as each device would compare its current version
with the other peers, which does not describe accurately the
reality of IoT-based ecosystems supporting different devices
from various OEMs. Furthermore, because of the nature of
the broadcasted request the scheme is susceptible to create
repetitive operations. For instance, the sent request can be
verified by a verification node, but a response node might also
conduct a confirmation using proof-of-work which is regarded
as an extensive consensus mechanism, thus consuming more
unnecessary network traffic and computational resources. In
addition, when the embedded device is required to download
a newly released firmware, it requests a list of peers from
where it can fetch the firmware file. However, as the operation
is performed only by the verification node without consensus
from the rest of the peers, it is plausible that the device
requiring an update falls to an eclipse attack where a malicious
verification node could try to send a compromised peers’ list.

Furthermore, Hu et al. [41] proposed an autonomous
scheme for FOTA updates with malware check. The procedure
is based on an SC that records the firmware metadata on-
chain and leverages several off-chain programs to validate
the correctness of the sent data by the manufacturer node.
However, no implementation details were provided regarding
the off-chain verification procedure and how the blockchain
nodes come to consensus before indicating that the request
to record the metadata of a new firmware is reliable. In
addition, the malware scan ratio part of the firmware metadata
is only uploaded by a single manufacturer node without
any verification by other peers, thus, if one of these nodes
is hacked an attacker could send a corrupted file that was
intelligently reverse engineered to bypass the external virus

check. Meanwhile, the on-chain verification is only based on
checking the signature of the manufacturer node as well as the
provided score from the external malware check tool, which
does not necessarily guarantee the reliability of the firmware
in case of leaked keys or insider attacks.

Whereas in [50], Choi and Lee proposed a distributed FOTA
architecture design for IoT devices based on blockchain. The
scheme leverages manifests defined in SUIT [28], that are
recorded on the immutable ledger by a vendor (or author as re-
ferred to in the paper). The architecture offers a solution to the
author-disappearance concern, where the server of an OEM is
targeted by an attack hindering the devices from downloading
the latest firmware update or patch. Nonetheless, the scheme
introduces a retrieval node (a trusted gateway between the IoT
devices and the blockchain network) which could represent
a security threat. Moreover, the procedure of checking the
firmware and its metadata is solely based on the provided
data by the author node and its digital signature. Thus, if
the node’s key is leaked an attacker could send a malicious
firmware with a modified manifest to bypass the checksum
verification. Furthermore, the IoT devices are required to send
a transaction periodically to query if there is a new firmware,
which might add up to the ledger’s size if the blockchain
system encompasses thousands of devices. Furthermore, the
scheme lacks a performance evaluation to assess its feasibility
and efficacy as it has not been implemented.

Besides, in BoSMoS [51], the authors focused on the
validity of IoT devices’ software rather than the procedure
of issuing updates or patches. They designed a blockchain-
enabled software status monitoring framework in order to
detect any malicious attempts to compromise the devices
and respond to the intrusion. The system is based on taking
snapshots of the software, using a trusted security monitoring
module, which are then stored on the immutable blockchain
ledger for periodic verification. Nonetheless, the scheme also
relies on the trusted software snapshots that are updated by
a single developer and signed using its public key to then
be registered on the blockchain ledger. In case the private
key of the developer is leaked or compromised this could
jeopardize the security of the monitoring system and integrity
of the recorded software metadata on-chain. Meanwhile, the
IoT devices within the scheme are not assigned with keys to
interact with the blockchain, but they rely solely on a gateway
that aggregates all blockchain requests from these devices and
signs them with its key. Thus, the scheme fails to provide
a certain degree of auditability (i.e., in terms of incoming
requests from the IoT devices, for instance to determine the
root of a denial of service attack on the blockchain system).
In addition, the design of the framework is more fit for
homogenous IoT devices and the authors did not address
the case where the system encompasses various OEMs with
different access rules.

C. Advantages and Limitations of RASSIFAB

On the one hand, an FOTA scheme can rely on the strong
cryptography protocols provided by blockchain (i.e., ECDSA,
SHA, etc.) to guarantee the immutability and non-repudiation

of the firmware’s files and their metadata. However, if we
fail to verify the recorded data on-chain by relying on a
single-root of trust (e.g., OEM author), several things could
go wrong. In fact, if we start from the presumption that
all manufacturer nodes are trusted in the blockchain-based
ecosystem and that the rest of the validators need only to verify
the transactions’ signatures of these nodes, we might fail at
achieving our required security goals (i.e., the integrity of the
firmware amendment requests and their metadata). Thus, our
scheme incorporates a voting-based verification mechanism
for the uploaded firmware’s metadata, rather than the actual
binary files for efficiency and scalability, yet without com-
promising on the security aspect of the scheme. Furthermore,
RASSIFAB also incorporates an immutable and auditable
reputation scheme used to mandate the access control of the
vendors’ nodes part of the FOTA framework. Where reputation
scores are updated in an automated manner using SCs and
based on the continuous behaviour of these nodes within the
blockchain network. Nonetheless, it is worth acknowledging
that classifying misbehaviour to assign new reputation scores
as well as ensuring the reliability of these scores across zones
is a challenging task that was the subject of some research
outputs [52], [53] and could be the focus of future work.
Besides, for the storage of the firmware files we proposed to
use the IPFS to form a consortium system among all OEMs
where the binary files would be encrypted before being pinned
to the P2P systems, hence, guaranteeing the confidentiality of
the manufacturers’ proprietary code. Nonetheless, the protocol
is still in its infancy and distributed storage, in general, is
still an ongoing line of research with several challenges that
remain to be addressed (e.g., free riders, incentives, etc.)
[15]. Moreover, the framework was implemented on only
four machines, which might not reflect a real case scenario.
Nonetheless, RASSIFAB is based on the Ethereum platform
where its public implementation supports up to ten thousand
physical nodes scattered around several countries. Also, our
scheme leverages Clique, which has a higher throughput and
minimized latency with a growing network size (i.e., number
of nodes) compared to other consensus mechanisms [40].

On the other hand, RASSIFAB only focuses on the security
of software supply chain rather than hardware supply chain.
For the latter, several blockchain-based schemes exist in the
literature. For instance, Xu et al. [54] proposed the design
of a blockchain-based framework used to manage critical
information about chips and to mitigate the risk of components
recycling, cloning, overproduction, etc. Similarly, the authors
in [55] also addressed the hardware supply chain provenance
concern by proposing a Hyperledger-based framework used
to ensure the traceability of electronic components as they
are circulating between manufacturers, distributors and end
users. Guin et al. [56] also used blockchain to ensure an
authentic tracking of the origin of edge devices by leveraging
the PUF for authentication. In a nutshell, hardware supply
chain schemes are used at the early beginning of a device’s
lifecycle to ensure the authenticity and provenance of all
its components. This aspect is extremely important in the
case of SIs as those are also composed of several chips and
their origins as well as integrity during the manufacturing

or assembling procedures are critical. We acknowledge that
eluding the security of hardware supply chain might limit the
capabilities of our proposed framework, but we also would like
to note that this matter falls beyond the scope of the paper and
could be investigated in the future. For instance, the hardware
provenance of the SIs would be coupled with the software
maintenance provided in our framework, and the PUF would
offer a strong authentication means for the SIs. Last, we should
note that ensuring the integrity of SIs’ firmware amendments
would guarantee a partial security of the whole ecosystem,
as attackers could still launch a top-down attack from the
aggregators or DSOs’ DERMSs controlling these inverters to
compromise their primary settings. In this case, our proposed
blockchain-based framework can be extended in the sense of
also incorporating the control aspect (e.g., voltage or frequency
control) of these DERs equipped with their IoT-enabled SIs.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented the design of RASSIFAB,
which is an FOTA scheme based on blockchain technology
to guarantee a secure, resilient, reliable, and auditable pro-
cedure of sending updates and/or patches to SIs connected
to the LV networks of the SG within residential areas. The
framework enables the deployment of large-scale DERs with
heterogeneous SIs, by leveraging network segmentation and
blockchain sharding. Thus, increasing the overall throughput
of the blockchain system in terms of processed transactions
and minimizing attack entry points from a cyber-security
perspective. The procedure of verifying the sent requests for
updates by the OEM nodes is performed following a BFT
manner rather than starting from the assumption of having
trusted OEM nodes, which we viewed as unrealistic due to
the threat of insider attacks or simply human error. Last but
not least, the proposed framework was intended to be used
for SIs; however, we should note that it was designed in a
generic and modular way that would enable it to manage also
the procedure of FOTA updates for other IoT-enabled devices
within the SG or other industrial applications.

For future work, we intend to study the collaborative aspect
between the various blockchain zones in terms of intrusion
attacks. For instance, if one OEM node is blacklisted within
a given zone, how can we ensure the correctness and fairness
of denying his access to the others. In addition, our scheme
was only tested on several machines that were partitioned
to emulate the resources of the devices running as light
nodes. Nonetheless, the possibility of configuring and running
a blockchain client on a Raspberry Pi, that would then be
interfaced with a real SI to perform the verification check over
the firmware and its metadata is also worth investigating. Last,
integrating RASSIFAB with other blockchain-based hardware
supply chain solutions to guarantee the authenticity of the SIs
using their PUF and DERs control schemes could also be the
focus of future research.

REFERENCES

[1] International Energy Agency, Renewables 2020 report, Nov. 2020. [On-
line]. Available: https://www.iea.org/reports/renewables-2020. Accessed
on: October 2, 2023.

[2] IEEE 1547-2018: IEEE standard for interconnection and interoperability
of distributed energy resources with associated electric power systems
interfaces, Apr. 2018. [Online]. Available: https://standards.ieee.org/ieee/
1547/5915/. Accessed on: October 2, 2023.

[3] VDE-AR-N 4105: Power generating plants in the low voltage network,
code of practice, Apr. 2019. [Online]. Available: https://www.vde.
com/en/fnn/topics/technical-connection-rules/power-generating-plants.
Accessed on: October 2, 2023.

[4] M. Antonakakis et al., “Understanding the mirai botnet,” in Proc. of the
26th USENIX Security Symp., Vancouver, Canada, pp. 1093-1110, Aug.
2017.

[5] C. Xenofontos, I. Zografopoulos, C. Konstantinou, A. Jolfaei, M. K.
Khan and K. R. Choo, “Consumer, commercial, and industrial IoT
(In)Security: Attack taxonomy and case studies,” IEEE Internet of
Things Journal, vol. 9, no. 1, pp. 199-221, Jan. 2022, doi: 10.1109/
JIOT.2021.3079916.

[6] S. Soltan, P. Mittal and H. V. Poor, “BlackIoT: IoT botnet of high
wattage devices can disrupt the power grid,” in Proc. of the 27th USENIX
Security Symp., Baltimore, USA, pp. 15-32, Aug. 2018.

[7] J. Ye et al., “A review of cyber-physical security for photovoltaic
systems,” IEEE J. of Emerg. and Sel. Topics in Power Electron., vol. 10,
no. 4, pp. 4879-4901, Aug. 2022, doi: 10.1109/JESTPE.2021.3111728.

[8] J. Johnson, J. Quiroz, R. Concepcion, F. Wilches-Bernal and M. J.
Reno, “Power system effects and mitigation recommendations for DER
cyberattacks,” IET Cyber-Physical Systems: Theory & Applications, Vol.
4, no. 3, pp. 240-249, Sep. 2019, doi: https://doi.org/10.1049/iet-cps.
2018.5014.

[9] G. Tertytchny et al., “Demonstration of man in the middle attack on a
commercial photovoltaic inverter providing ancillary services,” in Proc.
of IEEE CyberPELS, Miami, USA, pp. 1-7, Jan. 2021, doi: 10.1109/
CyberPELS49534.2020.9311531.

[10] D. E. Whitehead, K. Owens, D. Gammel and J. Smith, “Ukraine cyber-
induced power outage: Analysis and practical mitigation strategies,” in
Proc. of the 70th Annual CPRE, College Station, TX, USA , pp. 1-8,
Nov. 2017, doi: 10.1109/CPRE.2017.8090056.

[11] C. Konstantinou and M. Maniatakos, “Impact of firmware modification
attacks on power systems field devices,” in Proc. of the IEEE Int. Conf.
on SmartGridComm, Miami, USA, pp. 283-288, Mar. 2016, doi: 10.
1109/SmartGridComm.2015.7436314.

[12] CVE-2017-9860. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-9860. Accessed on: October 2, 2023.

[13] Thales - 2022 Thales cloud security study: The challenges of
data protection in a multicloud world, 2022. [Online]. Available:
https://cpl.thalesgroup.com/cloud-security-research#download-popup.
Accessed on: October 2, 2023

[14] Md N. Islam and S. Kundu “ Enabling IC traceability via blockchain
pegged to embedded PUF,” ACM Trans. on Design Autom. of Electron.
Syst., vol. 24, no. 36, pp. 1-23, Apr. 2019, doi: https://doi-org.tudelft.
idm.oclc.org/10.1145/3315669.

[15] E. Daniel and F. Tschorsch “IPFS and friends: A qualitative comparison
of next generation peer-to-peer data networks,” IEEE Commun. Surveys
& Tuts., vol. 24, pp. 31-52, First quarter 2022, doi: 10.1109/COMST.
2022.3143147.

[16] R. Dhobi, S. Gajjar, D. Parmar and T. Vaghela, “Secure firmware update
over the air using trustzone,” in Proc. of the IEEE i-PACT, Vellore, India,
pp. 1-4, Jan. 2020, doi: 10.1109/i-PACT44901.2019.8959992.

[17] K. Suzaki, A. Tsukamoto, A. Green and M. Mannan, “Reboot-oriented
IoT: Life cycle management in trusted execution environment for
disposable IoT devices,” in Proc. of the ACSAC, New York, USA, pp.
428–441, Dec. 2020, doi: https://doi.org/10.1145/3427228.3427293.

[18] M. A. Prada-Delgado, A. Vázquez-Reyes and I. Baturone, “Trustworthy
firmware update for internet-of-thing devices using physical unclonable
functions,” in Proc. of the IEEE GIoTS, Geneva, Switzerland, pp. 1-5,
Aug. 2017, doi: 10.1109/GIOTS.2017.8016282.

[19] D. Mbakoyiannis, O. Tomoutzoglou and G. Kornaros, “Secure over-the-
air firmware updating for automotive electronic control units,” in Proc. of
the 34th ACM/SIGAPP Symp. on Applied Computing, Limassol, Cyprus,
pp. 174–181, Apr. 2019, doi: https://doi.org/10.1145/3297280.3297299.

[20] B. C. Choi, S. H. Lee, J. C. Na and J. H. Lee, “Secure firmware
validation and update for consumer devices in home networking,”
IEEE Trans. on Consum. Electron., vol. 62, pp. 39-44, July 2016, doi:
10.1109/TCE.2016.7448561.

[21] D. Cooper et al., “NIST cybersecurity white paper: Security con-
siderations for code signing,” Computer Security Resource Center,
Jan. 2018. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/CSWP/
NIST.CSWP.01262018.pdf. Accessed on: October 2, 2023.

https://www.iea.org/reports/renewables-2020
https://standards.ieee.org/ieee/1547/5915/
https://standards.ieee.org/ieee/1547/5915/
https://www.vde.com/en/fnn/topics/technical-connection-rules/power-generating-plants
https://www.vde.com/en/fnn/topics/technical-connection-rules/power-generating-plants
10.1109/JIOT.2021.3079916
10.1109/JIOT.2021.3079916
10.1109/JESTPE.2021.3111728
https://doi.org/10.1049/iet-cps.2018.5014
https://doi.org/10.1049/iet-cps.2018.5014
10.1109/CyberPELS49534.2020.9311531
10.1109/CyberPELS49534.2020.9311531
10.1109/CPRE.2017.8090056
10.1109/SmartGridComm.2015.7436314
10.1109/SmartGridComm.2015.7436314
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9860
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9860
https://cpl.thalesgroup.com/cloud-security-research#download-popup
https://doi-org.tudelft.idm.oclc.org/10.1145/3315669
https://doi-org.tudelft.idm.oclc.org/10.1145/3315669
10.1109/COMST.2022.3143147
10.1109/COMST.2022.3143147
10.1109/i-PACT44901.2019.8959992
https://doi.org/10.1145/3427228.3427293
10.1109/GIOTS.2017.8016282
https://doi.org/10.1145/3297280.3297299
10.1109/TCE.2016.7448561
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.01262018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.01262018.pdf

[22] W. Viriyasitavat, L. D. Xu, Z. Bi, and D. Hoonsopon, “Blockchain
technology for applications in internet of things—mapping from system
design perspective,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8155-8168, Oct. 2019, doi: 10.1109/JIOT.2019.2925825.

[23] M. A. Ferrag and L. Shu, ”The performance evaluation of blockchain-
based security and privacy systems for the internet of things: A tutorial,”
IEEE Internet of Things Journal, vol. 8, no. 24, pp. 17236-17260, Dec.
2021, doi: 10.1109/JIOT.2021.3078072.

[24] A. Pillai, M. Sindhu and K. V. Lakshmy, “Securing firmware in internet
of things using blockchain,” in Proc. of the 5th ICACCS, Coimbatore,
India, pp. 1-6, June 2019, doi: 10.1109/ICACCS.2019.8728389.

[25] R. Akkaoui, “Blockchain for the management of internet of things
devices in the medical industry,” IEEE Trans. on Eng. Manage., July
2021, doi: 10.1109/TEM.2021.3097117.

[26] G. Bere, B. Ahn, J. J. Ochoa, T. Kim, A. A. Hadi and J. Choi,
“Blockchain-based firmware security check and recovery for smart
inverters,” in Proc. of the IEEE APECE, Phoenix, USA , pp. 1-5, July
2021, doi: 10.1109/APEC42165.2021.9487468.

[27] H. Tschofenig and S. Farrell, “Report from the internet of things
software update (IoTSU) workshop 2016,” IETF, RFC 8240, Sept.
2017. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8240.html.
Accessed on: October 2, 2023.

[28] Software Updates for Internet of Things (SUIT) Working Group. [On-
line]. Available: https://datatracker.ietf.org/wg/suit/about/. Accessed on:
October 2, 2023.

[29] B. Moran, H. Tschofenig, D. Brown and M. Meriac, “A firmware update
architecture for internet of things,” IETF, RFC 9019, Apr. 2021. [Online].
Available: https://datatracker.ietf.org/doc/rfc9019/. Accessed on: October
2, 2023.

[30] Russ Housley, ‘Using cryptographic message syntax (CMS) to protect
firmware packages,” IETF, RFC 4108, Jan. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/rfc4108/. Accessed on: October 2, 2023.

[31] IEC TR 62443-2-3:2015, “Security for industrial automation and control
systems - Part 2-3: Patch management in the IACS environment”, June
2015. [Online]. Available: https://webstore.iec.ch/publication/22811. Ac-
cessed on: October 2, 2023.

[32] U.S. Government Accountability Office, “SolarWinds cyberattack
demands significant federal and private-sector response”,
Apr. 2021. [Online]. Available: https://www.gao.gov/blog/
solarwinds-cyberattack-demands-significant-federal-and-private
-sector-response-infographic. Accessed on: October 2, 2023.

[33] IEEE P1547.3, “Draft guide for cybersecurity of distributed energy
resources interconnected with electric power systems”. [Online]. Avail-
able: https://standards.ieee.org/ieee/1547.3/10173/. Accessed on: Octo-
ber 2, 2023.

[34] UL Standard 1741, “Inverters, converters, controllers and interconnec-
tion system equipment for use with distributed energy resources”, Sept.
2021. [Online]. Available: https://standardscatalog.ul.com/ProductDetail.
aspx?productId=UL1741#. Accessed on: October 2, 2023.

[35] S. Brewster, “UL and NREL announce cybersecurity testing
recommendations for distributed energy resources and inverter based
resources”, Mar. 2022. [Online]. Available: https://www.ul.com/news/
ul-and-nrel-announce-cybersecurity-testing-recommendations-distribut
ed-energy-resources-and. Accessed on: October 2, 2023.

[36] A. Shostack, “Threat modeling: Designing for security, Chapter 3:
STRIDE,” Wiley, Feb. 2014, ISBN: 978-1-118-80999-0.

[37] S. Kok, “Faulty update brainwashes AEG microwaves into
thinking they’re steam ovens,” Mar. 2022. [Online]. Available:
https://thenextweb.com/news/update-brainwashes-microwaves-thinking
-theyre-steam-ovens. Accessed on: October 2, 2023.

[38] J. Yang, J. Dai, H. B. Gooi, H. D. Nguyen and A. Paudel, “A proof-
of-authority blockchain-based distributed control system for islanded
microgrids,” IEEE Trans. on Ind. Inform., vol. 8, no. 11, pp. 8287-8297,
Nov. 2022, doi: 10.1109/TII.2022.3142755.

[39] Y. Pang, D. Wang, X. Wang, J. Li and M. Zhang, “Blockchain-based
reliable traceability system for telecom big data transactions,” IEEE
Internet of Things Journal, vol. 9(14), pp. 12799-12812, July 2022, doi:
10.1109/JIOT.2021.3138462.

[40] A. Ahmad, A. Alabduljabbar, M. Saad, D. Nyang, J. Kim and D.
Mohaisen, “Empirically comparing the performance of blockchain’s
consensus algorithms,” IET Blockchain, vol. 1, no. 1, pp. 56-64, May
2021, doi: https://doi.org/10.1049/blc2.12007.

[41] J. W. Hu, L. Y. Yeh, S. W. Liao and C. S. Yang, “Autonomous and
malware-proof blockchain-based firmware update platform with efficient
batch verification for internet of things devices,” Computers & Security,
vol. 86, pp. 238-252, Sept. 2019, doi: https://doi.org/10.1016/j.cose.
2019.06.008.

[42] J. Shen, Y. Li, Y. Zhou and X. Wang, “Understanding I/O performance
of IPFS storage: A client’s perspective,” in Proc. of the IEEE/ACM 27th
IWQoS), Phoenix, USA, pp. 1–10, Apr. 2020, doi: 10.1145/3326285.
3329052.

[43] M. El-hajj, M. Chamoun, A. Fadlallah and A. Serhrouchni, “Analysis
of cryptographic algorithms on IoT hardware platforms,” in Proc. of the
2nd CSNet, Paris, France, pp. 1–5, Jan. 2019, doi: https://ieeexplore.
ieee.org/document/8602942.

[44] G. Kornaros et al., “Towards holistic secure networking in connected
vehicles through securing CAN-bus communication and firmware-over-
the-air updating,” Journal of Syst. Archit., vol. 109, no. 101761, Oct.
2020, doi: https://doi.org/10.1016/j.sysarc.2020.101761.

[45] N. Asokan, T. Nyman, N. Rattanavipanon, A. Sadeghi and G. Tsudik,
“ASSURED: Architecture for secure software update of realistic embed-
ded devices,” IEEE Trans. on Computer-Aided Design of Integr. Circuits
and Syst., vol. 37, pp. 2290-2300, Oct. 2018, doi: 10.1109/TCAD.2018.
2858422.

[46] Y. Su, Y. Gao, M. Chesser, O. Kavehei, A. Sample and D. C. Ranasinghe,
“SecuCode: Intrinsic PUF entangled secure wireless code dissemination
for computational RFID devices,” IEEE Trans. on Dependable and
Secure Comput., vol. 8, pp. 1699-1717, Aug. 2019, doi: 10.1109/TDSC.
2019.2934438.

[47] M. M. Rabbani, J. Vligen, M. Conti, and N. Mentens, “SHeFU: Secure
hardware-enabled protocol for firmware updates,” in Proc. of the IEEE
ISCAS, Seville, Spain, pp. 1-5, Sept. 2020, doi: 10.1109/ISCAS45731.
2020.9180850.

[48] A. Yohan and N. W. Lo, “An over-the-blockchain firmware update
framework for IoT devices,” in Proc. of the IEEE Conf. on DSC, Kaoh-
siung, Taiwan, pp. 1-8, Jan. 2019, doi: 10.1109/DESEC.2018.8625164.

[49] B. Lee and J. H. Lee, “Blockchain-based secure firmware update for
embedded devices in an internet of things environment,” Journal of
Supercomputing, vol. 73, pp. 1152–1167, Sept. 2016, doi: https://doi.
org/10.1007/s11227-016-1870-0.

[50] S. Choi and J. H. Lee, “Blockchain-based distributed firmware update
architecture for IoT devices,” IEEE Access, vol. 8, pp. 37518-37525,
Feb. 2020, doi: 10.1109/ACCESS.2020.2975920.

[51] S. He, W. Ren, T. Zhu and K. R. Choo, “BoSMoS: A blockchain-based
status monitoring system for defending against unauthorized software
updating in industrial internet of things,” IEEE Internet of Things Jour-
nal, vol. 7, pp. 948-959, Feb. 2020, doi: 10.1109/JIOT.2019.2947339.

[52] X. Xu, J. Gu, H. Yan, W. Liu, L. Qi and X. Zhou, “Reputation-aware sup-
plier assessment for blockchain-enabled supply chain in industry 4.0,”
IEEE Trans. on Ind. Inform., July 2022, doi: 10.1109/TII.2022.3190380.

[53] Y. He, C. Zhang, B. Wu, Y. Yang, K. Xiao and H. Li, “A cross-
chain trusted reputation scheme for a shared charging platform based
on blockchain,” IEEE Internet of Things Journal, vol. 9, pp. 7989-8000,
June 2022, doi: 10.1109/JIOT.2021.3099898.

[54] X. Xu et al. ” Electronics supply chain integrity enabled by blockchain,”
ACM Trans. on Design Autom. of Electron. Syst., vol. 24, no. 31, pp.
1-25, May 2019, doi: https://doi.org/10.1145/3315571.

[55] P. Cui, J. Dixon, U. Guin and D. Dimase, ”A blockchain-based frame-
work for supply chain provenance,” IEEE Access, vol. 7, no. 24, pp.
157113-157125, Oct. 2019, doi: 10.1109/ACCESS.2019.2949951.

[56] U. Guin, P. Cui and A. Skjellum, ”Ensuring proof-of-authenticity of
IoT edge devices using blockchain technology,” in Proc. 2018 IEEE
Int. Conf. on Blockchain, Halifax, Canada, 2018, pp. 1042-1049, doi:
10.1109/Cybermatics 2018.2018.00193.

Raifa Akkaoui received the M.Eng. degree from the National Institute of
Posts and Telecommunications, Rabat, Morocco, in 2016, and the Ph.D. degree
from the Huazhong University of Science and Technology, Wuhan, China, in
2020. In 2021, she joined TU Delft, Netherlands, as a Postdoctoral researcher.
Her research interests include blockchain, edge computing, Internet of Things,
cyber security, smart grids and game theory.

Alexandru Stefanov (Member, IEEE) received the M.Sc. degree from Po-
litehnica University of Bucharest, Romania, in 2011, and the Ph.D. degree
from University College Dublin, Ireland, in 2015. He is an assistant professor
of intelligent electrical power grids at TU Delft, Netherlands. He is the
scientific director of the Control Room of the Future technology centre in
the Department of Electrical Sustainable Energy. His research interests are
cyber security for power grids, resilience of cyber-physical systems, and
next generation grid operation. He holds the professional title of Chartered
Engineer from Engineers Ireland.

10.1109/JIOT.2019.2925825
10.1109/JIOT.2021.3078072
10.1109/ICACCS.2019.8728389
10.1109/TEM.2021.3097117
10.1109/APEC42165.2021.9487468
https://www.rfc-editor.org/rfc/rfc8240.html
https://datatracker.ietf.org/wg/suit/about/
https://datatracker.ietf.org/doc/rfc9019/
https://datatracker.ietf.org/doc/rfc4108/
https://webstore.iec.ch/publication/22811
https://www.gao.gov/blog/
solarwinds-cyberattack-demands-significant-federal-and-private
-sector-response-infographic
https://standards.ieee.org/ieee/1547.3/10173/
https://standardscatalog.ul.com/ProductDetail.aspx?productId=UL1741#
https://standardscatalog.ul.com/ProductDetail.aspx?productId=UL1741#
https://www.ul.com/news/ul-and-nrel-announce-cybersecurity-testing-recommendations-distribut
https://www.ul.com/news/ul-and-nrel-announce-cybersecurity-testing-recommendations-distribut
ed-energy-resources-and
https://thenextweb.com/news/update-brainwashes-microwaves-thinking
-theyre-steam-ovens
10.1109/TII.2022.3142755
10.1109/JIOT.2021.3138462
https://doi.org/10.1049/blc2.12007
https://doi.org/10.1016/j.cose.2019.06.008
https://doi.org/10.1016/j.cose.2019.06.008
10.1145/3326285.3329052
10.1145/3326285.3329052
https://ieeexplore.ieee.org/document/8602942
https://ieeexplore.ieee.org/document/8602942
https://doi.org/10.1016/j.sysarc.2020.101761
10.1109/TCAD.2018.2858422
10.1109/TCAD.2018.2858422
10.1109/TDSC.2019.2934438
10.1109/TDSC.2019.2934438
10.1109/ISCAS45731.2020.9180850
10.1109/ISCAS45731.2020.9180850
10.1109/DESEC.2018.8625164
https://doi.org/10.1007/s11227-016-1870-0
https://doi.org/10.1007/s11227-016-1870-0
10.1109/ACCESS.2020.2975920
10.1109/JIOT.2019.2947339
10.1109/TII.2022.3190380
10.1109/JIOT.2021.3099898
 https://doi.org/10.1145/3315571
10.1109/ACCESS.2019.2949951
10.1109/Cybermatics_2018.2018.00193

Peter Palensky (Senior Member, IEEE) received the M.Sc. degree in electrical
engineering, the Ph.D. and Habilitation degrees from Vienna University of
Technology, Austria, in 1997, 2001, and 2015, respectively. He co-founded
Envidatec, a German startup on energy management and analytics. In 2008, he
joined the Lawrence Berkeley National Laboratory, Berkeley, CA, USA, as a
Researcher, and the University of Pretoria, South Africa. In 2009, he became
appointed as the Head of Business Unit on sustainable building technologies
at the Austrian Institute of Technology (AIT), and later the first Principal
Scientist of complex energy systems at AIT. In 2014, he was appointed as a
full professor of intelligent electric power grids with TU Delft, Netherlands.
He is active in international committees, such as ISO or CEN. His research
interests include energy automation networks, smart grids, and modelling
intelligent energy systems. He also serves as an IEEE IES AdCom Member-
at-Large in various functions for IEEE. He is the past Editor-in-Chief of IEEE
Industrial Electronics Magazine, and an associate editor of several other IEEE
publications, and regularly organizes IEEE conferences.

Dick H.J. Epema was a full professor of distributed systems with the Delft
University of Technology, Netherlands. His research interests are in the areas
of resource management in distributed systems and in blockchain technology.
He has authored more than 140 scientific papers, and has been on numerous
program committees in grids, clouds, and P2P computing. He was an associate
editor of the IEEE Transactions on Parallel and Distributed Systems and the
IEEE Transactions on Cloud Computing. He was general co-chair of EuroPar
2009 and IEEE P2P 2010, and he was general chair of HPDC 2012 and
CCGrid 2013. He was program committee co-chair of HPDC 2013.

	Introduction
	Motivation
	State-of-the-Art
	Contributions
	Paper Organization

	Security Standards and Best Practices
	Problem Formalization
	System Model
	Transmission System Operators
	Distribution System Operators
	Original Equipment Manufacturers
	Prosumers

	Threat Model
	Firmware Downgrade Attack [C5, C6]
	Firmware Mismatch Attack [C5]
	MitM or Redirection Attack [C2, C5]
	Firmware Reverse Engineering [C2, C4, C5, C6]
	Supply Chain Attack [C1-C6]

	Design Goals
	Authentication, Authorisation and Accountability [G1]
	Firmware Integrity and Non-Repudiation [G2]
	Firmware Confidentiality [G3]
	Lightweight Security and Scalability [G4]

	Proposed RASSIFAB Scheme
	Initialization and Registration
	Firmware Update Procedure

	Implementation and Analysis
	Performance Evaluation
	Execution and Communication Costs of the Initialization Phase
	Execution Time of Sending Firmware Updates
	Ledger Overhead with Sending Firmware Updates
	IPFS, Encryption and Hash Run-Time Overheads

	Security Properties
	Intrusion Prevention [G1]
	Firmware Integrity and Confidentiality [G2 and G3]
	Lightweight and Scalable FOTA [G4]

	Related Work and Discussion
	Centralized Hardware-Assisted Schemes
	Distributed Blockchain-Enabled Schemes
	Advantages and Limitations of RASSIFAB

	Conclusion and Future Directions
	References
	Biographies
	Raifa Akkaoui
	Alexandru Stefanov
	Peter Palensky
	Dick H.J. Epema

