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Machine Learning in Power Grid Load-Forecasting
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Distributed Energy Resources (DER)
Integration makes grid controls
highly dynamic and distributed
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Dynamic power pricing adds to
complexity

Traditional load forecasting becomes
highly challenging

Deep-learning based predictors
using smart meter data is more
manageable

PROBLEM: These neural network based load forecasters are vulnerable to
stealthy adversarial attacks!

NIST

VANDERBILT E? UNIVERSITY National Institute of 2

Standards and Technology




Motivation for the TeSER Testbed

« This testbed targets evaluation of potential vulnerabilities and successful resilient strategies for complex Cyber-Physical
Systems (initially in the power-grid domain). Although adversarial machine learning is not new, it's application in the
context of security and resilience of CPS is novel.

* In power-grid, traditional load forecasting doesn’t work well with highly dynamic variations in smart grid topology (e.g.,

bidirectional power flow) and power supply and demand (e.g., DERs and time of use rate). Here, it would require updating
models continuously, which is not practical.

* Machine-learning methods can handle these, but suffer from black-box problem. Also, modern grid now has much higher
digital connectivity among grid and control equipment. These two makes ML methods susceptible to adversarial attacks.
So, we need a testbed that can help with evaluating vulnerabilities and successful resilient strategies.

« Another key motivation for this testbed is to support a web-based, collaborative, model-based
approach that can enable rapid prototyping and experimentation with various neural network
architectures and data processing, training and evaluation pipelines.

« TeSER also aims to support tight integration with the CPS simulation tools — such as
GridLAB-D — which further simplifies the process and shortens the time for input data
generation for such models.

* Note: All of the testbed tools and technologies are largely domain-independent. So, these

methods can be directly utilized in other CPS application domains such as transportation,
biomedical, defense, etc.
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TeSER: Testbed for Simulation-Based
Evaluation of Resmence

WEB BROWSERS « Built using four “open-source” technologies:
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Deep Learning Framework
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Evaluating Adversarial Attack Impact on Grid Forecasters
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Ex 1: Comparing Deep Learning Based Load Predictors
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Ex2: Load Predictions under Stealthy Adversarial Attacks

o Medium scale feeder in GridLAB-D . LSTM load forecast predictor . Threat COInStraintS: 30% Of Sensors
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« Assume worst-case white-box attacks (i.e., full
knowledge of predictor and anomaly detector)
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Ex2: Experiment Results

Four adversarial attack settings:

Fast Gradient Sign Method (FGSM): Single step attack to
maximize the prediction deviation from the original predictor

Iterative GSM: Iterative attack to maximize the prediction
deviation from the original predictor

Directed GSM (reverse = 1): Iterative attack to minimize the
predicted values

Directed GSM (reverse = —1): Iterative attack to maximize
the predicted values
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Prediction Results (MSE) with Different Prediction Deployment Settings
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Attack/Detection Settings Original/NoAttack | Adversarial/NoDetect | Original/StaticDetect | Adversarial/StaticDetect
Fast-GSM (rate=0.3,step_len=0.2) 0.1255 0.5375 0.1287 0.5322
[terative-GSM (rate=0.3, step_
len=0.01,step_num=20) 0.1255 0.7801 0.1287 0.7606
l?lrectedGSM (l'ate=Q.3, step_len=0.01 01255 04785 01287 04913
,step_num=20), reverse=1)

PlrectedGSM (l:atez.(‘).3, step_len=0.01 0.1255 1025 01287 09899
,step_num=20, reverse=-1)
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