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ABSTRACT

Despite the recent easing of electricity wholegalees, the absolute level of on-peak
electricity prices for most markets is tremendousiyh. The German on-peak electricity
wholesale price is about 290% higher than six yagrs which has resulted in tariff hikes.
These tariff hikes burden economies worldwide agult in higher inflation or economic
cool down. The first part of this paper focusesnoarket power and the amplified price
spikes during on-peak hours especially. A simplelehds presented that is able to describe
the strategic behaviour of similar market playersimy on-peak and off-peak hours.
Furthermore, the work shows in an easy way howwwoess can mitigate market power by
creating a short-term demand curve due to load-gemant programs. We conclude that
for a sustainable electricity system without unliguaigh price spikes, a consideration of
the short-term demand curve by using automatedsygsis important. It is necessary to
introduce a technical infrastructure that makesseduload shift potential accessible and
gives consumers the possibility to respond to psjui&es easily in the short term without
sacrificing comfort or services. We present a neiomated approach to create such a
short-term demand curve. The proposed Integral tResoOptimization Network (IRON)
indicates a robust and distributed automation ngtviior the optimization of distributed
energy supply and usage. We describe a basic ganedel for load shifting, which allows
describing a collective storage management in ay eamy. Furthermore, the first real
implementation result of the research is presetitedso-called IRON-Box, a hardware
interface that realises the interface between teadurces and the IT infrastructure.

Keywords Demand Response, Distributed Generation (DGprinétion Systems, Load
Management, Market Issues and Strategic Pricingk&d ower, Real-Time-Pricing

1. INTRODUCTION on-peak prices. On-peak prices are increasing rfaste
than the off-peak prices, which indicates market
Energy consumers worldwide have been problems especially during on-peak hours. Empirical
concerned for the past three years about dramigtical investigations of several other spot markets shuav t
increasing energy prices. Before electricity marketS8me pattern. For example the Nord Pool system
restructuring  in  Europe, politicians  always Price shows average on-pef’;\k spl_kes_ln the 80€/MWh
emphasized the advantages of liberalization. A veryf@nge. Furthermore, the investigations show that
important objective was to provide “cheap” eledtyic ~ Many markets get more and more volat|le,_ wh|ch
for the European Union and its economy. Now, it Ncreases the uncertainties for market participants
looks like the exact opposite happened (see aJjo [7  (S€€ @lso [2]). These higher prices on the whagesal
Within the last six years, the average electricity Markets translate into higher consumer prices (see
wholesale prices in Germany and Austria increasedSO [7]). Within the last six years, the average
by 285%. The average off-peak prices for the electricity price (including taxes) for industrial
German/Austrian market increased by 2709 COnsumers in the European Union increased by 31%

compared to an increase of 290% for the average
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(source: [7]), which burdens the European economy?2 THE THREAT OF AMPLIFIED
considerably. PRICE SPIKES

Furthermore, these price jumps are not only in
the electricity sector, but also in the natural gstor.

Natural gas and oil are used as energy inputs imyma Figure 1 shows for the German / Austrian
electric power plants worldwide, and therefore, theelectricity market an average daily wholesale price
jump in primary energy explains partly the pattern. The figure denotes the disproportionate

skyrocketing electricity prices. Additionally, thew increase in on-pedkprices compared to off-peak
CO, emissions trading system may contribute partlyprices.

to these higher prices. However, the questionsist i
possible that the missing short-term demand curve
contributes to the tight volatile market and higlcgs
we see now?

Of course, we might run out of oil and peak in
the production very soon, but in the short to naeiat
the problem certainly does not lie in the problein o
peak oil, directly. The problem is constituted tne t
fact that consumers have no or only limited cajitgbil
to react to price signals during times with limited eeeee T
SUDply Capacities and h|gh demand. For examp|e, if 123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24
you live in the outskirts of Los Angeles and yowda rovre
to get to the city for work, the only possibilityoy
have is to drive. This means your response to high
gasoline prices will be almost zero, but this bédav
creates economic inefficiency for the whole society

350

€/MWh

Figure 1: Average German/Austrian daily wholesale
prices for selected months. Source: Own database.

The missing possibility of consumers to

In the electricity sector, we have similar respond to price signals may provoke the threat of
conditions. Which consumer in the European Union ek P gn yp .
strategic on-peak pricing. The natural gas pricas—

can respond to real-time prices and change his / he ¢ for th inal lant - i d
consumption behaviour? Almost no short-term elasticrletssg/er}ce 05 | ezr?)ggTaJp?W;ggfsal -t |tnhcred$¢
demand curve exists in most of the electricity o from July o July » out the average

markets. This problem is basically constituted g t on-peak price increased by 269% in the same pgr_iod,
fact that no information flows between suppliersl an azgetzezig()sredu\getofor%l;srk(e){] tg\%et;;ezzr%:ggt'ged
consumers (in terms of real-time price signalsg th 'I[Dhis bephaviour we will sh(I)Dw 2 simple aamin
market is in an unstable diverging condition. ) pie gaming
On the other hand. research reveals that itapproach for the Nordic Power market. Additional
would be possible to éhed peak demand Withlnformation according market power in the Nordic
enhanced automation technologies without loss inPOWer market and German market can be found at [5]

comfort. Such systems can create elastic demangnd [10]. The theory is based on the assumption tha
curves in a simple way. [3] shows the Albertson some companies monitor the market conditions and

enhanced lighting control system, which allows 3OOW'thdraW Gne or more power plant units to shiit the

Albertson stores to reduce peak demand up to 7'§lipp|y ctgrve és?e Figure 2) lto theJefé. In th'(?/\me b
MW. For more information on large facilities and intersection between Supply an emand can be

demand-response please refer to [11] modified. The suppliers try to control the market
In this work, we present a ne'w approach to price due to faked maintenance. During off-peak

create a long- and short-term demand curve thafonditions, the withdrawal of some power plant sinit

stabilizes the electricity market, which then
contributes to C®emissions reduction. The proposed
Integral Resource Optimization Network (IRON) z | practice the definition of on-peak and off-peak
indicates a robust and distributed automation ng¢wo depends on the Country considered. On-Peak: 08.00
for the optimization of distributed energy supphda hours to 20.00 hours for Germany and Austria.

usage. Networked consumers, producers, and storageWe do not postulate that strategic pricing isdhe
services (e.g. refrigerators) have the (technical)and only reason for these high prices. Other re;ason
capability and the right to manage — within certain for the disproportional increase can be the,CO
limits — their supply and consumption over timeisTh €missions trading system, different input fuelsirtyr
pattern will enable previously unused and ON-Peak hours as well as lower power plant

; . . - ; - efficiencies during on-peak hours. We do not
inaccessible shiftable potentials and directly teisu investigate the impact of the G@missions trading

a long- and short-term elastic demand curve thatsystem, different input fuels or lower power plant
contributes to sustainable energy market equilibria  ticiencies in this work.
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will not change much. The margiiabower plant In the following sections 2.2 and 2.3, we want
remains constant, and therefore, no market pricdo demonstrate the underlying gaming theory in a
change can be creafedHowever, if market players simple way. To show a simple mathematical model, it
realize that the market is in an on-peak conditiad is necessary to create two similar players (= sappl

about to use the next type of power plant very soonor consortium of suppliers): player 1 and player 2
the players can provoke a jump to the next marginawith similar market shares and power plants. This
power plant (e.g. 62 GW on-peak demand accordingneans, the term “player” refers to the company. The

Figure 2 and Table 1). capacity of one power plant unit is assumed to.be 0
GW.
60

E 50 Max. system load 3rd Wednesday in Jan 2004: Table 1 MOdlflea winter Supply curve for the

S Lo loTew following winter examples. Source: [17] and own
- Max. t load 3rd Wed day in J 2000, i

2 17.00hours-18.00hours: 601GW. T calculations. __ :

S 30 System [ Number of | Costsin Estimated

g \ r Capacity| Units for Eactf 2000 Cost$ in 2004
'% 20 Winter off peak 03.00hour: —* n [GW] Player(n) [E/MWh] [€/MWh]1O
R X A—~] Hydro | 028 028 3.78 3.78

] —/_/—I

£ CHP

~ o e Industry 28-32 28-32 5.79 6.00

1 858 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Capacity [GW N(L;:_:iar 32-44 32-44 7.55 7.55

Figure 2: Modified winter supply curve for the district | 44-58 44-58 11.32 11.50

Nordic® power market, 60 per cent water reservoirs|_heating
(Supply curve based on installed capacity in 2000 a | C%3 | 58-62 | 58-62 15.73 18.71

price data for 2000). Source: [17]. (Cz):s gi:g?’ gi:g?’ gg?j gg'gg
Others 67- 67- 50.32 50.32

During on-peak conditions the commandin
market players need to withhold only few units to
provoke a jump to the next market price level.
However, this behaviour is supported by the faat th i
consumers have no or only restricted possibility to
react to higher prices in the short term. Firstabyf
almost all consumers have no possibilities to see
real-time market prices. How should a consumer
know about the conditions on the market when no
price signal is received? Furthermore, if the comsu
would see a price, then how should he / she re§pondI
Most of the actions would require time and
potentially lead to a loss in comfort (e.g. indoor
temperature). This means all actions are burdeged b
transaction cosfs and therefore, the reaction to
market price changes would be minor in the
short-term. Due to this inelastic demand curve, the
strategic price setting is an easy game for the
commanding market players. However, the creation
of an elastic demand curve is exactly the objeative
the IRON project and will be discussed in the
following chapters.

2.1 Abbreviations
Demand [GW]
Number of player (1,2)
Power plant units, it is assumed that the units
either run at full power or are off-line
Number of power plant units for each player,
= m/2, integer value (each player operates units
with 0.5 GW)
Number of removed system capacity during
off-peak conditions
Cost difference if the marginal power plant
changes

¢ Specific profit for full-supplying player

o Specific profit for full-supplying player without
any gaming activities in the market

¢ Additional specific profit for full-supplying

player

w Additional specific profit for supplier that
withdraws a power unit (supplier which acts
unlawfully)

* The market price in a market system always
represents the costs of the last used unit (incase
power plant), which is the marginal unit. 8 The modified supply curve is distinguished from
Unless the foul-playing supplier withdraws 12 GW the theoretical supply curve by maintenance and
to reach the next marginal power plant (accordng t water supply. In this, case we assume 60% water
Table 1 coal). reservoir availability.
® Denmark, Finland, Norway, Sweden. ° Without emissions trading. In our approach we
" For example, transaction costs can be search anconsider only cost differences and therefore emissi
information costs incurred in determining price or trading can be neglected for the considered units.
bargaining required to come to an acceptable’® 2004 values are estimated according data from the
agreement with the other party. Energy Information administration. See also[8].
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Table 2: Payoff matrix: Specific additional gains  withhold a unit. In any case, the market price is
during winter on-peak conditions, chicken game  manipulated and lifted (see Table 2).
i=2

Chicken Game Unit Unit Not 2.3 Winter Off-Peak
() Available Available We assume a typical off-peak situation with a
Unit 0../0 1320.,/129 demand ) of 46.2 GW.
_, | Available | 20 G-/1299.,
7| Unit Not d=46.2 GW,n =47, m=94 5
Amilablo | 1299-/1320 | 1299./1299., ®)
2.2 Winter On-Peak, Incremental Plant Not Normally, the players would withhold the
Available expensive power plant units to allocate high psofit

If we assume a peak demard) 6f 60.1 GW, for each power plant. However, in this case this
thenm has to be 121 (see also Table 1). However, tovould mean withdrawing Combined Heat and Power
reach the next incremental power plant it is neagss (CHP) district heating units, which seems difficult
to withhold more than two units with 0.5 GW (see during winter months, and therefore, the playertbas
Table 1). To show the underlying theory, a typical 'emove a nuclear power plant dfit
winter situation of the last years (e.g. 2004) is
assumgd. We assume a dem_and greater thgr) 61.5 GW. 32<j< 44 (6)
According to this assumption it is sufficient to

withhold only one unit to reach the next increménta
plant. x = cy1— = 11.5 €/MWh — 11.5 €/ MWh =

0 €&/MWh 0
61.5 GW<d < 62 GW,n =62 1)
The full-supplying player that does not
This means the cost differencecf can be  Withhold any unit collects an additional specifiairy
calculated from Table 1 according to Equation 2. according to Equation 8 of 0 €/MWh.

Dp. =p.- p.=(C..- ¢)*n=0/MWh *3
[ = Gyi= G = 40 EMWN-18.71 EMWh = Pi =P~ Po = (Coa- C) (8)
21.29 €/MWh

) The player that withholds one unit collects a
The full-supplying player that does not |oss according to Equation 9.
withhold any unit collects an additional specifigimgy

according to Equation 3.
[ = ch— G = (11.5 €MWh —7.85 E/MWh)= g,
1 3.95 €/MWh
t = ¢ 0=(Co - C,)*n =1320/MWh (3)

Dp,, =n*Dc- Dc; = - 3.95/MWh (10)
The player that withholds one unit collects a

lower additional gain than the full supplying playe The best strategy for both players is to provide
the market with all units; all other possible opso
=(c.., - ¢.)*(n- 1)=1299/MWh * ) result in losses for either one or both players
WA This means market power is suppressed if

. . . , Equation 11 is true.
This means we obtain a chicken game with the

best strategy to cooperate if the other player _ )
withdraws a unit and the information about thigact Dpy =nbe- De; <0
is available. There is no reason to fight the other

supplier, because the maximum gain is constituted b

cooperation (see also Table 2). In this game, one

player always wants to do the opposite of whatever

the other player is doing. However, if we assuna th
the action of one party is made without knowledfje o
the others action, then the safe strategy is alM@ays *? If the player withholds the incremental plant then
all payoffs in all cells of Table 3 would be zefithis
means no additional gains, because of the withdrawa
1 To calculate the net gain [€/HDp has to be multi-  can be collected.

plied by 0.5 GW. 3 The type of marginal plant does not change.

(11)
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Table 3: Payoff matrix: Specific additional gaingd The term demand-side management (DSM)
ing winter off-peak conditions includes following measures:

' i=2 - Efficiency-increasing measures (high-efficiency

Pg);fogsfc:(rwlnter Unit Unit Not bulbs, efficiency increases in heating systems,

Peak( 1) Available Available low-energy buildings, distributed generation using

Unit combined heat and power). The term

B Available 0=1/0=2 0-1/-3.95- efficiency-increasing measures is equivalent to the
=1 Unit Not term demand-side measures and these measures

Available -3.9941/02 | -3.95:4/-3.95, lead to real energy reductions during certain

periods (e.g. year) and consequently to ,CO
On basis of the criterion above, the following  €missions reduction.

conclusions can be obtained: . Load-management measures (time-of-use tafiffs
For low demand (e.g. summer) there is minor real-time-pricing, interruptible loads,
market power. However, the additional gain is very ~ internet-controllable loads).
small (respectively zero), and therefore, the In contrast to efficiency measures, load

additional gaming risk is higher than the additiona management measures are merely load-shifting
gain, so if this risk is internalized, then market measures because the shifted on-peak power (or
power is suppressed according Equation 11 and ngnergy) is consumed during off-peak hours. These
price manipulation takes place (a detailed analysigneasures are used to manage shortfalls in supply
for summer months can be found at [17]). during on-peak hours. No major g@eduction is
There is one real situation with , < 0, if the  achieved®. Loads that allow such alterations in their
incremental plant does not change when a unit iconsumption patterns without loss in consumer
withheld (demand curve is far away from the next comfort are discussed in Section 4.4.

higher cost level at supply curve, e.g. winter

off-peak). 3.2 Synergy between Efficiency and
Therefore, a further reason for the observedLoad-Management Measures _
increase in electricity on-peak prices seems the  Important is that distributed generation (DG)

strategic behaviour of few utilities. However, the can be an efficiency measure and/or a
incentive to withhold capacities during off-pealuhe  l0ad-reductio measure depending on the specific
is minor or not given. usage pattern of the DG technology and depending on
The threat of strategic prices is supported by thethe use of combined heat and power (CHP). If DG
fact that consumers have only restricted possislit With CHP is installed, then the overall system
to react to price spikes. Therefore, it seems rsacgs efficiency increases in general, and therefore, the
that consumers have the possibility to react td1hig €missions are reduced. However, some DG
prices and can reduce the on-peak demand tdechnologies can be used during times of high
contribute to the increase of market performange. A €lectricity prices to reduce the electricity demaimd
elastic demand curve created by e.g. an IRON systerfither words, low-efficiency DG technologies such as
can turn a profitable chicken game (withhold units) feciprocating engines without CHP can be used to
into a non-profitable game (offer all units) if the create an elastic demand curve and to reduce
consumers shift the demand curve depending on thétility-delivered electricity by operating duringres
seen price. This means, the IRON system shifts thé®f high electricity prices. The usage of such
demand also to the left and stabilizes the int¢igec  inefficient technologies might decrease the overall
point with the supply curve on a lower level (sésa System (e.g. micro-grid) efficiency. Figure 3
Figure 4). In any case, consumers need to see markdlustrates these two different basic options for a

prices (tariffs) otherwise there is no informatitow ~ generic healthcare facility in San Francisco.
and no demand response. Pacific Gas & Electric (PG&E)'the Ut|||ty

serving San Francisco—charges an additional demand

3. DISTRIBUTED GENERATION
AND LOAD MANAGEMENT 1 Time-of-use tariffs and real-time-pricing can fésu

in efficiency increasing measures. Without any eric

3.1 Definition of the Term Demand-Side signal no incentive for the customer would exist.
Management (DSM) 15 Please note that a shift in the load curve in@®as

Investigations performed in course of this work the off-peak load, and therefore, it can increds® t
revealed that researchers use different definitmhs off-peak power plant efficiency by using more
DSM frequently, and therefore, we want to clarify o efficient generators. This effect can also result0;
definition of DSM. reductions, but this effect is not the main foctithcs

aper.

Pﬁ Load reduction is seen by the utility.
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chargeé’ of 2.65 $/(kW month) during mid peak
hours® on winter dayS and 11.8 $/(kw month) for
summer monthg’ during on-peak® hours, and
therefore, the optimal economic decision for the However, instead of the inefficient 500 kW
healthcare facility is to install a 500 kW recipatiag reciprocating engine, a load-management system can
engine without CHP and run it during mid-peak andkick in and reduce / shift parts of the load withou
on-peak hours to reduce the demand charge relateldsses in system efficiency. This means the
costs (see also Figure 3). In this example, thel®@0 combination of CHP-enabled technologies and
engine creates an elastic demand curve — seereby thoad-management measures (e.g. interruptible loads)
utility - without increasing the system efficiency. to reduce on-peak demand seems the most favourable
Additionally, the healthcare facility has to option for a distributed automation network as the
install a 500 kW reciprocating CHP system and to ru IRON System. The combination of load management
it 24 hours a day to increase the overall systemand CHP-enabled DG results in amplified benefits fo
efficiency and to decrease the energy-related costghe considered site. This means, there is a sytierge
The 500 kW internal combustion CHP system is arelationship between efficiency measures and
demand-side measure that increases the efficiencyoad-management measures (for more information
The increase in efficiency is realized by using teas see also [4] and [17]).
heat for hot water and absorption cooling. Pleade n With the IRON System, we want to establish a
that prior to the DG installation electric chillensere  real optimization algorithm for distributed supalgd
used in the building. The optimal investment usesdemand. This new algorithm can be applied to a
waste heat for absorption cooling and thereforesingle site or a combination of distributed sites.
cooling (electricity) is being offset by waste hésae
also Figure %).

In this way, the overall system efficiency can
increase to 80%. A detailed description of the ghow
healthcare facility can be found at [17].

4. THE DERIVATION OF THE
DEMAND CURVE

500kW reciprocating
Engine without CH|

4.1 Long-Term Elastic Demand Curve V.S.
Short-Term Elastic Demand Vurve

Based on the description of efficiency measures
and load-management measures from Section 3

B T R R RS
e long-term and short-term demand curves can be

500kW reciprocating
engine with CHP

cooling offset by
waste heat recovery

created.
The short-term demand curve reflects reactions

to price changes without any investment in
demand-side measures. In contrast to the short-term
demand curve, the long-term demand curve
represents all reactions to price changes with
investments in demand-side-measures.

12 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24
hours

Figure 3: Optim&® electricity supply structure for a
healthcare facility in San Francisco on a January
weekday. Source [17].

4

e dormand curve]  SuPplY curve
" They are proportional to the maximum raié without IRON
electricity consumption (regardless of the duration )
frequency of such consumption). Market| = Short-term
8 9 amto 12 pm Price p demand curve with IRON—p
9 October to May T
2% June to September -
2 12 pm to 6 pm Quantum [MWh/'h]

2 please note that there is also a heating offsetalu

waste heat, but this offset is not shown in Figdire

%3 Such optimal investment and operation decisions
can be found with DER-CAM (Distributed Energy
Resources Customer Adoption Model) from Naturally, without any automatic system (e.g.
Lawrence Berkeley National Laboratory. It is a IRON system), the short-term demand curve is very
mixed-integer linear optimization program (MILP) steep due to transaction costs and the loss inavamf
written and executed in the General Algebraic Figyre 4 shows a principal short-term demand curve.
Modeling System (GAMS). The objective is {0 gach small horizontal step indicates a certain oreas
minimize annual energy costs for the modeled site,o o~ jecrease in heating set-point). However, the
including utility electricity and natural gas casts level (costs in €/MWh) indicates the associated

amortized capital costs for DG investments, andt i ¢ d defi the | i ot f
maintenance costs for installed DG equipment. ransaction costs and defines the 10ss in com

Figure 4: Principal short-term demand curve witd an
without an IRON system
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each short-term action. For example, simple measurebe fulfilled. First of all, the on-site potentiais shift

as turning-off lights can be very easily achievedload in time or even perform load shedding havieeto
without much loss in comfort and without high utilized optimally, i.e. potential resources aredisas
transaction costs. If the demand reduction is notmuch as possible, but only to that extend that the
enough and additional measures are required, thenomfort of the user is not negatively influenced.
more inconvenient actions are needed. Such actionSecondly, since this optimal utilization is demanggi
can be reduction in heating set-point temperaturethe process should be self-controlled. However, the

which results in a loss in comfort, and therefore,

higher costs. Additionally, most of the "expensive”
actions result in minor reductions, and in this ywag
get a very steep short-term demand curve.

Investigations performed in other projects show

very limited potentials for load shifting or redigst

fulfilment of these two conditions imposes
transaction costs. This means a maximum of
flexibility in the electricity demand is not necasity
equal to the social-economic optimum.

The key concepts leading towards a flexible
short term demand curve are load shedding and load

because of such simple measures — without an IROMhifting / energy storages. In case of load sheagldin

(see also [15]). Equation 12 estimafelsased on

loads are simply switched off. Performing load

empirical investigations in Germany-the short-termshedding during on-peak consumption periods is a
demand curve for household costumers (without arsimple measure. Energy storage in general can be

IRON system).

Loadreduction= 387" In(@) +408 [%] (12)

min

maximal charged tariff during a day
minimal charged tariff during a day

pm ax

Pmin

From this, a 10% reduction in demand is

reachable only if the customer recognizes a 500%

higher electricity tariff than normal (off-peak)f I

enough consumers react to high prices a feedback

loop will be created that is reducing the electyici

price due to lower demand. A detailed analysis abou

the reachable price reduction due to load reductio
can be found at [15] and [16].
To maximize the short-term effect of high

prices, more flexible consumer behaviour has to be
created by using automated systems (e.g. IRON) fo

load shifting / reduction that minimize the loss in
comfort.
For more information on the reachable load

reduction for large costumers through automated

systems, please look at [3] and [11].

4.2 Achieving a Short-Term Elastic Demand Curve
Ddue to Load-Management

Increasedelasticity of the consumer demand
implies that consumers are able to adapt thei
consumption in accordance to the
electricity price. In order to achieve a demandveur
with a maximum of elasticity, two conditions hawe t

(
respective

realized by actual (i.e. “real”) storage or by
conceptual storage, i.e. load shifting. Here, the
demand-side flexibility is constituted in the
possibility to schedule a consumption process yreel
within certain restrictions defined by the consater
application. Still, a reduction of the consumptiisn
performed (e.g. during on-peak times), but the
consumption is delayed only until more supply is
available. For more information on the economics
of load shifting, please look at [16].

4.3 Utilizing Consumption Processes

Load shifting cannot be applied to every type of
load. For example, the electricity demand of an
elevator cannot be shifted in time. However, fongna

"Noads a delay in operation of few minutes does not

matter, e.g. an electric hot-water boiler. For some
loads, even longer delays up to few hours can be
acceptable, e.g. refrigerators and domestic
Gishwashers or washing machines. However, the
load-shifting capabilities for individual loads yaa
lot and also depend on real-time factors such as
changing hot-water demand. Additionally, loads with
delay times of only few minutes were considered as
inappropriate for effective load shifting in thespa
Another group of electrical loads that can also
be used to achieve a more elastic demand curve are
inert thermal process loads. These processes can be
categorized into heating applications (electrical
heaters, domestic and industrial ovens, etc.) and
cooling applications (air-conditioning, refrigeregp
freezers, etc.). All these thermal processes have i
common that they are able to store thermal energy

due to the heat capacity of a room or a
4 Please note that the estimation of such load reducthermal-isolated box. This heat capacity can be
tions is very difficult and is subject to high \ations.  utilized for shifting electrical energy consumptiidn

Equation 12 is a rough estimation of the principle the temperature set-points of the process allow a

logarithmic shape based on 5 case studies performegertain amount of variation. When the temperature

in Germany. Investigations performed for industrial set-point for a cooling process is decreased, the

costumers show the same principle logarithmic shape -
; T o ; - “system consumes more enefgythan in averagek)
but show also high variations within the industrial Y % g

sector. For more information, please look at [15]. for the time needed to reach the lower temperature



M. Stadler et al.: Distributed Energy Resource éditton and Dispatch 189

set-point. This circumstance is depicted in Figbre of existing consumption processes. Moreover,
(middle) for the case of a two-point regulated aopl pumped storage schemes cannot be realised
system. When the original set-point is restore@, th everywhere because of geographical restrictions.
system consumes less enerfy)than in average for The overall consumption pattern of the load
a certain time period (see Figure 5, bottom). Tlaus, shift action can be described as the superimpaositio
load shift is performed by employing thermal energy of the unmodified process and a storage pattera. Th
storages. The advantage of thermal storage systems fact that load shifting can conceptually be desttib
that the possible storage time is normally veryglon  as storing and releasing energy is exploited by the

even unrestricted. generic description model presented in the next
section.

Temperature, Temperature . i

o\nloff Average temperature 4.4 A Generic Model for Load Shifting

When implementing a self-controlled system
performing the previously discussed measures af loa
E E E shedding and load shifting, all (distributed)
participating loads can be seen as resources.
Operating the system does basically mean to shive t
problem of optimal resource allocation and dispatch
A preferably simple and consistent descriptionhef t
resources involved is crucial for the dispatch
algorithm to be efficient and flexible.

Normal operation of cooling Time
process

Temperature,
onfoff

E E>E E The first step towards such a generic model is to
_ _ _ describe both techniques of load shedding and load

Temperature, e WL T WSS shifting / utilisation of thermal energy storage as
onloff special cases of a general class of conceptual

electricity storages. For thermal processes, this h
been discussed already.
Figure 6 gives an overview of basic storage

£ £'<F E

> characteristics. Having mapped the different ofgtion
Warming up to new set-point Time of load management to conceptual storage
Figure 5: Storing into and releasing energy from a characteristics, each activity can be modelled waith
two-point-regulated cooling process individual set of parameters

When changing temperature set-points, also theglPo, Teharge Tuncharge Tstore Tnostords Where
thermal losses of the system are influenced. These

losses depend on the difference of inside anddritsi Po the power amplitude,

temperature and the quality of thermal isolation. Teharge the time to charge the conceptual storage
Lower temperature differences result in a moreTycrage the time to discharge the conceptual stor-
efficient system, higher differences in a lesscaffit age (in some cases this time is smaller
system. This means for the model of thermal storage thenTehagedue to losses in the process)
devices that the storage should only be chargedhwheTsiore the storage time

needed. Further, it can be seen from Figure 5Stheat  Thostore the minimum time between two storage
switching activity of the “thermal pump” (which can operations (not depicted in Figure 6)

be realised in many different ways) is generally no
changed by the measures described here. Only the on  More complex procedures, e.g. those where
and off times are changed. Although not included indifferent power amplitudes are involved for the
the simplified example discussed here, costs ofconceptual charging and discharging can be destribe
switching activities or set-point deviation candiso by superposing multiple scaled instances of thécbas
easily incorporated into the optimisation problem. prototype$’.

Although the described measures are not
directly electrical energy storage techniques, ey
potentially be used to operate in the same way or
provide the same service as real electrical energy
storages such as pumped storage schemes. Such

direct electrical energy storages can be also,

Vanadium-Redox batteries or even flywheels (see > Please note that a pre-charge storage basic doncep

also [12] and [6]). The costs for setting up subal also exists, but is not used in this work. Basiadlo

L . ) shifting, load interruption, and load shedding ¢emn
storages can be significantly higher than making us described with a post-charge storage only.
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Power
A
load interruption with  Po |
immediate recharge .
Power (e.g. boiler) Time
A
P+ (special case of pe—> <—
P05t'0har93 Storage ‘(—)_Tsfore 'E;?t?]t-(:harge Storage Tuncharge Tcharge
— > Time
Tstore = Tuncharge< Ta‘:a!ge)
Tc.harge Power
Tuncharge A
load shedding PoT
(special case of Time
post-charge storage
with e—>
Tstore — oo) Tuna‘:arge

Figure 6: Basic Storage Characteristics

4.5 One More Degree of Freedom or air-condition systems). The first process stores
The major application for load management in additional thermal energy to release it (by redgdia
our perspective is peak-load reduction due to loadoower consumption) aft€fgre+ At the same time,
shifting. Peak-load reduction will be taken as anthe second process loads its thermal storageaasel
example for the following discussion, but the gaher the energy aftefg o2 This is repeated for processes
concept can also be applied to other demand-sid8 and 4. The total effect of this schedule is thames
applications, such imbalance energy and otheras that of a single storage with
auxiliary services.
Storage should hold energy in times of low  Tguoretotar= Tstorest Tstore,2t Tstore 3™ Tstores  (14)
electricity prices and release it in times of peak
demand and prices. This is valid for real storagghs  Fower (load)
as pumped storage schemes as well as conceptu ¥ ol ' ! L Process |
storages as described in the previous section P L i | i .
Conceptual storages are available in large numbers P . P P . Time
but they are distributed and have restricted irmlial Process 2
storage capacities. Furthermore, many distributec ] : i i | )
storages have very short storage times, which appea i { i |
to be one reason that utilization of distributed . o ' i | | Process 3
storages was regarded as ineffective in the pasi -. .. -- .. L
However, the collective (because networked) storage
capability is considerable. Each conceptual stofage I i P P P ' Process 4
can hold the energy; ;

.

Ei = Po, Tcharge,i (13) Total i Tstore 1 ! Tetors.? |

A
&
3
T

If E is seen as an "energy packet”, which can
reside in a conceptual storage for a certain igg; :
then the objective of peak-load reduction can be 1
re-formulated: shift as many (and as large) energy "
packets as possible from off-peak to on-peak times.
This rather sophisticated description of on-peak
demand reduction leads to a new insight, which is

Time
Figure 7: Increasing the storage time by utilizing
multiple conceptual storages: four individual load
shifts (top) accumulate to one long shift operation

simple, but allows an additional degree of freedom (bottom)
resource allocation: if a single (conceptual) sjeres
not able to hold an energy packet long enough, ithen Losses (not shown in Figure 7) occur in all

can be transferred to other storages after th@gor consumption processes, but the handoff of energy
time — of the initial storage — has expired. Figlre packets from one process to the next does not cause

shows a simplified example of four different aqgitional losses. This is due to the fact thatgyes
duty-cycled consumption processes (e.g. refrigesato not actually flowing from one process to the other
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process nor is electrical energy factually stomredi Alternatively, a resource with restricted storage
releasable way. In fact, just a subtle coordinatthn time searches for the highest slope in the prosgect
DSM resources is applied in order to achieve aprice curve, since here the maximum gain can be
modulation of the overall power consumption that is achieved.
equal to that achieved by a real storage. More sophisticated resource scheduling is
With this new approach, we can achieve largerneeded for another kind of objective: load curve
capacities by means of parallel operation and longefollowing. The idea here is to control all distrtbd
storage times by means of serial operation. Since @esources as they were one large single stotage
large number of single resources can be utilizegl, a large collective can have considerable capabilities
combination of both options is possible. If all and can e.g. be used for peak-shaving. The coliecti
resources have the same properties, then albehaviour is controlled by defining a load curvatth
achievable combinations would be given by Equationis followed (as good as possible) by the distridute

15, resources. This is particularly interesting in the
context of demand charges, where a large percentage
E Tstore = CONSL. (15)  of the energy bill is constituted by costs for the

largest monthly or yearly peak demand (see also
meaning that the total energy stored in the sysfem [17]).
and the duration it can be stor@g,. are two pa- In Figure 8 an example for optimal load curve
rameters that can be chosen freely as long as thefollowing is depicted. Twenty thermal processes1AO
product stays constant. This constant is systo A20, with similar properties (arbitrary storage
tem-specific. time, equal storage energy) were assumed in this
But since each individual resourckas its own  example. Nevertheless, similar results can be
set of {E, Tsiores Thostore}, ONly the summation of all  achieved with other storage types, i.e. with retd
individual terms is constant; storage time. The comparison of specified and
achieved load curve is shown at the top. Below, that
the charge / discharge schedule for some of the
E Mg =  K;=const (16)  resources is depicted. Not shown in Figure 8 is the
Tk " actual power consumption of the loads used as DSM
resources, which would simply add up to a constant
K; describes the abstract storage potential of oneffset.
individual conceptual storage This can be clarified This schedule is the result of an offline
with the following example: The objective of shiii ~ optimization. A precise mathematical description of
the energyE fromt to t+T can be achieved in two the resource behaviour constrains the problem of
different ways using two different basic resourcesminimizing the integral difference to the target
with different E; and Tsee,; First, each resource is curve® . In a real-world application, a more
able to stords; = Y4E for Teirei= T, OF secondly, each sophisticated algorithm is needed that still uses
resource is each able to stdte= E for Tsiore, = ¥2T. offline results as a guideline but is able to react

For both cases; = Y2E T is the same. real-time events such as resource outage due to e.g
communication failure or unexpected discharge. The
4.6 Collective Storage Management detailed algorithm can be found at appendix A.
Having described a unified description of DSM
resource behaviour, this can be used to generate 5. THE IRON
optimal schedules for the distributed storage syste
The term "optimal schedule” is used in a more INFRASTRUCTURE

specific way here. We assume an objective that shal o o o

be achieved by the DSM resource collective. The®-1 Communication within the Electricity System
collective will not be able to meet the objective The key to the Integral Resource Optimization
perfectly under any circumstances. For an optimalN&twork is the self-controlled operation of DSM
schedule, the distance to the objective (accorttirg ~ eSources, and therefore, it heavily relies on a
certain distance metric) is minimized. The objegtiv communication infrastructure. The control strategie
function can be individual energy cost reductiam. |
this case, each individual storage does its best t3° This concept is somewhat similar to the concept of
reduce consumption in high-price times. A storagevirtual power plants, where (primarily) distributed
with arbitrary storage time examines the anticigate generators are controlled as a single unit. Howewmer
price curve and searches for the lowest and highes®ur approach the focus is on storage and not on

point. Then, it charges at the minimum and disobarg 7eneration.. , L
at the maximum of the price curve. The mixed-integer optimization problem was

described using ZIMPL [9] and solved using SCIP
[1].
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can contain energy price broadcasting or preciselyconsumers, and in the lack of standardization of
coordinated operation of distributed storages (andremote metering and control systems. In the frame o
supply capacities). The rapid growth of information the IRON project, a common information
technology (IT) related services and equipment overinfrastructure is specified that is able to meet th
the past decades went along with a strong dedtine i needs of distributed DSM algorithms and can handle
costs for IT equipment. Hence, communicationthe vast growing number of connected sites. The
systems needed for coordinated DSM were alreadyghallenge is to identify a suitable and flexible
considered to be affordable in the 1990s (see alsmetwork topology together with a protocol that is
[14]). However, by now there is merely no open for future enhancements. Furthermore, the
information flow in the electricity systems besides connection interface between the IRON and the
remote control of transformer stations and dataelectrical equipment has to be specified (see also
accounting. We see the reasons for that in thelynigh Figure 9).

diversified interests of different players such as

distribution grid operators, energy providers and

Required load curve

! Result of optimal resource
schedule EREN

\ :
Charge Discharge ~h S

S/

A

A2

A3

A4

As

A6

e ™ ™o ™o ™o ™o o

A7

. P
o b

Figure 8: Example of twenty similar DSM resourcetimally scheduled so that that the sum of charging
discharging powers follow a given load curve aselas possible. Only the differential power congiongs
shown

Given the possibly large number of single

| | communication nodes that are going to be connected
| | i | by the IRON communication infrastructure, only a

| | hierarchical network structure appears useful (see

i Figure 9).
| | Due to cost restrictions, the top-level
(long-distance) infrastructure can be implemented
/ only by using existing communication networks,
predominantly the Internet and Telecom networks.
[:] ﬂ [:] """"""""" Different types of end-user equipment and on-site

sub-networks are connected to the access servers of

Figure 9: Structure Of the prospected |RON commu- th|S tOp-level netWOfk. The Size and Structurehﬁ!fSB
nication system. sub-networks depend on the kind of entity: for an

industrial plant an already present automation
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infrastructure can be used, while for an office for material costs of 230 Euro (single unit in vésw

building an already present building automation volume). Still, large potentials for optimizatiom i

network can be used. In case that no other automati terms of size, complexity and costs exist. Congiger

infrastructure is present, the interface betweedlo prices for comparable mass-market products, we

and IRON is realized by using an “IRON-Box”. anticipate that the device could be manufactured fo
costs well below 100 Euro.

5.2 The IRON-Box

The IRON-Box realises the interface between 6. CONCLUSIONS
the DSM resource (e.g. load) and the IRON. Since
freely configurable equipment for load management Load-management measures, used to manage

is not available as COTS (commercially lack in supply during on-peak hours, allow altevati
off-the-shelve) products, the IRON team has beenn the consumption pattern without loss in consumer
developed a prototype, which is depicted in Figurecomfort and can create a short-term elastic demand
10. The prototype serves as hardware equipment fogurve. Such measures can be coordinated by an
experiments as well as a basis for estimating tisesc  Integral Resource Optimisation Network—"IRON",
for a commercial production. The device featureswhich indicates a robust and distributed automation
optional WLAN (Wireless Local Area Networks) or network for the optimization of distributed usagela
mobile network (General Packet Radio SwitchedSupply.

Network, GPRS) data connection on the Because of the current situation on the
infrastructure side. A small on-board processorélectricity markets and, particularly, due to theK of
manages the communication flow and local controlan elastic demand curve in the short term, theathre
loops. On the load side, two channels with oneyrela Of strategic prices is increasing. It seems necgssa
output, three digital inputs and one power senache that consumers have the possibility to respondgb h
are available. Using the power sensor, the IRON-BoxPrices and can reduce the on-peak demand in avder t
can measure the power consumption patterns of th€ontribute to the increase of market performanae. A
connected load and generate statistics about e lo €lastic demand curve, which can be achieved by
utilization, which can be used to optimize load using the discussed IRON System, can turn a
schedules. The relays allow switching on / off the profitable chicken game (withhold units) into a

connected loads according to the optimizationnon-profitable game (offer all units) if the consens
algorithm used. shift the demand depending on the charged price (e.

real-time pricing). In any case, consumers neexb&o
tariffs based on the market prices otherwise tliere
| : | no information flow and no demand response.

‘@ 7 Additionally, the combination of CHP-enabled
‘@4?0 Q%b?b technologies and load-management measures to
- o /k@ reduce on-peak demand seems the most favourable
&% e option for a distributed automation network as the

IRON. With the IRON system, we want to establish a

# holistic optimization algorithm for distributed suip
/ and demand. This new algorithm can be applied to a
single site or a combination of distributed sites.

The IRON System offers a new solution to
- ~ integrate participants which have been considered

% A ‘ % # unreachable in  conventional structures  of
\ : - contemporary electricity markets. It has been shown

$ v B that the potential of distributed resources can be

exploited by applying the concepts of storage
Figure 10: Main components of the IRON-Box modelling on load shift measures as well as saridl
parallel operation of such real or conceptual gfesa
. . Despite strong restrictions in individual resourdee
Additionally, measurement equipment (e.g. collective system is very flexible.

energy meters or _tem_perature sensors) can be The fact that all participants are equally capable
connected to the Q|gltal inputs. The lRON'BQX can exerting influence on the consumption and use of
work  together W't.h (or even replace simple) the electrical “resources” means a great econondc a

con.trollers for air conditioning systems or socio-economic benefit. This reduces the impact of
refrigerators. disadvantages and problems caused by the

110 The I?xpenr_n(tenta]l ;gg has a S'Zet OIh7? x 70 Xinsufficiently liberalized contemporary electricity
mm. 1t Consists o components tha aCcounlﬁwarkets without a short term elastic demand curves.
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Unlike traditional means of demand side control the
described IRON System exploits unused optimization
potentials without negatively influencing the
customers’ processes or comfort. The system acts in

the background, in a distributed, discrete andilflex 13.

manner. The implemented hardware prototype
(IRON-Box) that interfaces an individual load with
the IRON System allows cost estimates for the IRON
infrastructure. Given the current situation of cHpi
decreasing costs for information and communication
technology on one hand and steadily rising energy.
prices on the other hand it is just a matter ofetim
when the benefit of coordinated short-term DSM
measures is broadly realized.
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When calculating the convolution, the sum

APPENDIX: MODEL USED FOR index has only to cover those terms that are noo-ze

OPTIMIZATIONS In the following discussion it will always assumed
that all processes are fully scheduled in the time

As outlined in Section 4.4, DSM resources Canmterval [0, T.e”(ﬂ. with no process overlapplng the
._borders of this interval. In this case, the contiolu

be modelled by _th_e linear superpos!tl(_)n of l.)aSICcan be calculated as shown in (22) and thus has a
storage characteristics. Consequently, it is pssib .
finite number of terms.

translate the scheduling problem of DSM resources

into a linear optimization problem. In order to a&/o Torg

the following discussion becoming unnecessarily a,*b,= ab,, (22)

complex, the optimization problem shall only be k=0

discussed for resources with arbitrary storage time

Toore Furth_ermore, the energy lewg|, of resourcen
DSM resources can either be charged or®@" be defined as

discharged, resulting in a positive or negative n

contribution to the load profile. Two serigg andd, Sui= Py (23)

can be defined, so that t=0

To sum up the previous variable definitions, the
impulse seriesc,; and d,; are the actual unknown
variables defining the schedule of charging and
discharging processes that shall be determinedhdy t
and optimization. Powerp,; and energy levek,; are

derived from them and are needed in the objective
(18) function and further constraints respectively.
The objective function subtracts the achieved
overall load profilepy, from the required profile

It is useful to split charging and discharging Preq,~
into two series, so that the total number of chaygi
processes per resource can easily be restricted by Tena

Cni = 1 fornis the centre time slot of a
charging process for resouriger 0 other- a7
wise,

d»; = 1 forn is the centre time slot of a
discharging process for resouicer 0
otherwise.

expressions like . Piotn = Pregn| =
; 24
c.<m Tos| N _ (24)
"n & (19) Pni - preq,n ® min,
n=0| i=0

without having to operate with absolute values.

Nevertheless, a single series (where N is the total number of resources). The

absolute value of the difference is used in order t
@i =Cny —0n; (20) keep the problem piecewise linear (it is possilole t
translate (24) into a set of linear equations with



196 International Journal of Electronic Business Maeatgent, Vol. 5, No. @2007)

restricted index ranges [9]). From an application ni=1l for n=0... Teharget Thostore (26)
perspective, the square of the difference would be 0 otherwise,
preferable, but in that case the problem cannot be
solved by solver for linear problems. and to restrict the amplitude of the convolution of
distance series and impulse series. Depending on
Further constraints of the problem are restricted  ihe restrictions of actual resources it may be nec-

storage capacity: essary to define separateseries for charging and
discharging or even to formulate more complex
Smin,i £ Shi £ Smaxj (25) constraints.
restricted charge and discharge frequency: the t .=(c, +d )*d, £1 (27)

impulses in cn,i and dn,i must not come too close
each other (refer to Tnostore in Section 4.4). The
resource may need some time to settle on a certain
energy level until the next set-point change catunc

A possibility to express this in a linear equatisrto
make use of a distance series



