
An Alternate PowerFactory Matlab Coupling
Approach

Aadil Latif, Mohsin Shahzad, Peter Palensky
Energy Department

AIT Austrian Institute of Technology
Vienna, Austria

aadil.latif.fl@ait.ac.at

Wolfgang Gawlik
Institute of Energy Systems and Electrical Drives

Vienna University of Technology
Vienna, Austria

wolfgang.gawlik@tuwien.ac.at

Abstract— PowerFactory is a powerful power system analysis
tool used for simulating the electrical grid. ‘Smart Grid’
envisions a modernized electrical grid that uses communication
to gather and act on information. The ever increasing
communication and controls in power systems increases the
complexity of the system. Co-simulation becomes essential to
couple system simulators from different domains. This paper
gives an overview of possible PowerFactory / Matlab coupling
approaches. It further discusses the advantages and limitations of
each of these. Additionally, an alternate coupling approach is
suggested, its pros and cons are discussed. Two test cases have
been implemented that highlight different advantages of the
proposed method.

Keywords—PowerFactory; Matlab; Co-Simulation; Software
coupling

I. INTRODUCTION

With increasing share of renewable energy in the electricity
market, there is a growing need for a power grid simulator that
can cater for interdependencies between the power grid and
other domains such as the communication network, weather
forecasting tools etc. [1]. Many commercial and open source
tools are available that are domain specific e.g. ETAP and
PowerFactory for power systems simulation, OMNET++ and
Opnet for communication network simulation and F5 for
weather forecasting. One solution to simulate these
interdependencies is coupling these domain specific tools
together.

PowerFactory is a tool for analysis of the electrical power
system designed for domain experts. The software package is
vertically integrated catering to both transmission and
distribution networks. It provides capabilities for load flow,
short circuit analysis, steady state, transient , optimal power
flow as well as several other studies for balanced and
unbalanced systems. In PowerFactory system dynamics can be
investigated using load flow, root mean square (RMS)
simulation or electro-magnetic transient simulation depending
on the time constant of the phenomena. DIgSILENT
Programming Language (DPL) is a scripting language in
PowerFactory that can be used to access objects and automate
tasks e.g. short circuit sweep. DPL however cannot be used
while RMS simulation is running. Custom controllers and
algorithms can be implemented in PowerFactory using
DIgSILENT Simulation Language (DSL) [2].

Matlab is a high level language with a large number of
interdisciplinary tool boxes e.g. optimization, signal
processing, statistics, image processing etc. [3]. Using co-
simulation framework these toolboxes can be used in
conjunction with PowerFactory to extend its capabilities. A key
feature of Matlab is Simulink, a multi-domain GUI based
simulation environment, which comes with a huge library for
modeling both continuous and discrete time systems. This
makes it an ideal tool to implement custom system models such
as generators, relays etc.

Andrei Stativa et al. [4] in their work optimized the tuning
parameters of power system stabilizers and its placement by
implementing the controllers in PowerFactory and a multi-
objective optimization algorithm in Matlab. Statistics toolbox
can potentially be very useful to automate statistical analysis
for results obtained from a large number of simulation runs.
Matthias Stifter et al. [5] in their Co-Simulation Training
Platform for Smart Grids implemented the power system in
PowerFactory, components like generators and batteries in
Matlab and the control system in 4DIAC.

The paper is organized as follows: Section II gives an over
view of various PowerFactory/Matlab coupling schemes.
Additionally, a pros and cons of each of these methods are
discussed. Section III describes the coupling architecture of the
proposed method. Two test cases have been implemented and
discussed in Section IV to highlight different advantages of the
proposed method. In Section V a conclusion is derived based
on the results detailed in Section IV.

II. COUPLING SCHEMES

PowerFactoy supports a number of external interfaces that
can be used for data exchange and Matlab coupling. User
requirements and ease of implementation are the main driving
factors in selection of the interface used for coupling.

A. PowerFactory’s builtin Matlab interface
1) PowerFactory provides a direct interface to Matlab by

connecting a DSL model to a Matlab script. In this co-
simulation framework Matlab runs in engine mode [2] and the
simulation runs in a sequential manner. Matlab is invoked at
every time step and all the parameters are sent. It then returns
a time vector, state variable matrix and controller output
matrix. PowerFactory uses the matrices and the time vector to

978-1-4799-7736-9/15/$31.00 ©2015 IEEE 486

calculate the derivatives and the output of the controller.
Figure 1 illustrates the sequential co-simulation procedure
between PowerFactory and Matlab.

Fig. 1. Sequential co-simulation of PowerFactory and Matlab

B. Peer-to-peer (P2P)
1) Andrei Stativa et al. [4] used a file sharing approach

to couple Matlab and PowerFactory for an optimization
problem. The power system was modeled in PowerFactory
and the optimization algorithm was implemented in Matlab.
Figure 2 is the graphical illustraton of the coupling scheme of
the two simulators. Three CSV files, one dedicated for
transfering data from Matlab to PowerFactory, one to transfer
results from PowerFactory to Matlab and one to switch
between the two simulators, were used in this coupling
scheme.

Fig. 2. File sharing between Matlab and PowerFactory

2) PowerFactory provides OPC interface for
asynchronous data exchange. It is popular interface for
industrial networks for SCADA and control system
implementation. OPC interfacing requires a dedicated OPC
server and PowerFactory to run as an OPC client. The
frequency of data transfer is user defined. Matlab has an OPC

toolbox that enables it to connect to an OPC server. Figure 3
illustrate a possible PowerFactory/Matlab coupling scheme.

Fig. 3. Matlab and PowerFactory communicate as OPC client

3) A powerful feature of PowerFactory is the ability of
a user to include external C++ functions in both DSL blocks
and DPL scripts. [5] implemented a socket comunication
example using an external DLL to open a socket to a server
and transmit measured data. Matlab provides builtin
commands for socket communication. The same principle can
be extended to implement a bidirectional communication with
Matlab via sockets. Figure 4 shows a scheme for coupling
PowerFactory DSL block and Matlab using sockets.

Fig. 4. PowerFactory and Matlab coupling via sockets using external DLL

C. Coupling PowerFactory and Matlab using Libray (dll)
1) PowerFactory’s application programming interface

(API) is perhaps the most power interfacing scheme. The API
provides 3rd party applications access to PowerFactory data
models, internal calulations and simulation functions. The API
runs PowerFactory in engine mode. The C++ application can
then communicate with Matlab using several different
techniques as shown in Figure 5.

a) Matlab provides an API for C++ that can be used to
couple the two simulators. In this coupling scheme both
PowerFactory and Matlab are accessed via API and the C++
application instantiates both the simulators.

b) The C++ application can use a socket to
communicate with Matlab, making the C++ controlling
application and PowerFactory once again will be instantiated
using the API.

Fig. 5. PowerFactory and Matlab coupling using the API

III. PF-ML-COUPLER
To be able to create an instance of PowerFactory from

within Matlab a wrapper “PF-ML-Coupler” has been written
and assembled as a .NET object. The wrapper uses the API

487

interface and extends its low level functionality. These
functionalities include:

 Running balanced and unbalanced load flows

 Control over RMS and transient simulation

 Read / write object values

 Read PowerFactory internal calculations

 Running other power system analysis tools provided by
PowerFactory i.e. modal analysis, reliability analysis,
optimal power flow etc.

 Exporting result files

 Create / delete objects within PowerFactory.

Matlab version R2009a and later can dynamically load
DLLs assemblies from .NET Framework class library. The
library will only be loaded if all three i.e. Matlab,
PowerFactory and the wrapper are either 32 bit or 64 bit builds.
It is important to note that due to limitations of .NET, Matlab
has access to the values of an object and not the object itself.
Figure 6 illustrates the coupling scheme.

Fig. 6. PowerFactory / Matlab coupling using a .NET DLL (PF-ML-Coupler)

The Matlab example in Listing 1 shows how to activate a
project in PowerFactory and run load flow. The C++ library is
made visible to Matlab, after which the constructor is used to
create an instance of PowerFactory. PowerFactory starts in
engine mode and functions calls can be used to perform
functions like changing the visibility of PowerFactory instance,
active a project and run a load flow.

DllPath = 'C:\Users\LatifA\Desktop\PF-ML-Coupler.dll';
PFpath = ‘C:\Program Files (x86)\DIgSILENT\PowerFactory 15.1’
PFwrapperDll = NET.addAssembly(DllPath);
PFinstance = PFnamespace.PowerFactory(PFusername, PFpassword,
PFpath);
PFinstance.setVisibility(isPFvisible);
PFinstance.ActivateProject(PFproject);
isLFvalid = PFinstance.RunLoadFlow(LFtype);

Listing. 1. Matlab load flow example using PF-ML-Couple

IV. TEST CASES

In this section two implemented testcases will be dicussed.
The testcases highlight the advantages and the possibilities
one has by coupling the two simulators.

A. Optimizing custom objective functions

PowerFactory provides a tool for calculating optimal power
flow. However, the objective functions are predefined and
implementing user defined objective functions is yet not

possible. Matlab is an ideal tool to implement optimization
algorithm and define a custom objective function. Multi-
objective optimization is another possibility.

Loss minimization (LM) is an optimization problem for
scheduling generator output to minimize system losses. For the
test case a simple five bus system has been implemented in
PowerFactory with four lump loads, two generators and an
external grid [6].

* The example has been taken from [6] example 7.9

Fig. 7. The 5 bus system

The LM problem has been formulated as a sum of losses of
all transmission lines (TL), where ்ܲ and ்ܳ are the active
and reactive power loss of the ݅th TL, and ܵ is sum of all TLs.

ܰ is the total number of TLs in the network.

)ܨ ܵ) = ට(்ܲ
ଶ + ்ܳ

ଶ)

ே

ୀଵ

The objective function can then be formulated as:

min [ܨ(ܵ)]
Subject to constraints:

ܲ
 ≤ ܲ ≤ ܲ

௫

Where, ܲ is the real power output of the ݅th generator and
ܲ
 and ܲ

௫ are the lower and the upper bound of the ݅th
generator. Listing 2 details the implementation of the objective
function in Matlab.

function [Fitness] = CostFunction(P)
 global PFinstance;
 [r,c] = size(P);
 Fitness(r) = 0;
 for i = 1:r
 Pgini = P (i,1:c);
 PFinstance.SetPropertyDouble('Sync Gen 2','pgini',Pgini(1));
 PFinstance.SetPropertyDouble('Sync Gen 4','pgini',Pgini(2));
 PFinstance.RunLoadFlow(0);
 Fitness(i) = sqrt(PFinstance.GetPropertyDouble('Grid','c:LossP') ^2

+ PFinstance.GetPropertyDouble('Grid','c:LossQ') ^ 2);
 end
end

Listing. 2. Implementation of the objective function in Matlab

Table 1 lists the additional generation constraints used for
the experiment.

488

TABLE I. GENERATOR OPERATIONAL LIMITS

Generator ࡼ(MW) ࢞ࢇࡼ(MW)

S1 10 40

S2 20 100

Modified bat algorithm (MBA) [7] is a variant of bat
algorithm; a population based metaheuristic optimization
technique like particle swarm and genetic algorithm. The
algorithm mimics the echolocation behavior most prominent in
micro bats. The algorithm is an iterative algorithm, were in
each new generation the bats converge towards the best
experienced to that point and move away from the worst
experiences.

In this experiment MBA has been used to optimize the
formulated objective function. For the simulation, population
size has been set to six and the maximum iteration limit has
been set to 20. Figure 8 presents the simulation results. Optimal
active power dispatch in this example is 40 MW and 88.87
MW for generator S1 and S2 respectively.

Fig. 8. Loss minimization using Modified Bat Algorithm

The experiment provides a proof of concept of optimizing

user defined objective functions by coupling PowerFactory and
Matlab. Matlab Optimization Toolbox provides a large number
of algorithms which can alternatively be used to solve the
problems with single and multiple objectives.

B. Implementing controller for steady state simulation

In areas with high PV penetration periods of high PV
production and low consumer consumption results in over
voltages. As the electrical distance from the transformer along
the feeder increases this phenomenon becomes more
prominent. In some cases the voltage rise can be severe enough
to damage electrical equipment [8].

Variable power factor control (VPFC) is a voltage control
method that reduces network losses compared to constant
power factor method. Another advantage of using variable
power factor control is that it is open loop hence very stable
[9]. The German guide line VDE-AR-N 4105 also recommends
characteristics shown in figure 12 [10]. Figure 9 illustrates
controller design used in the experiment.

Fig. 9. Characteristics of the voltage controller

In the following example several different scenarios
(without PVs, PVs with controllers and PVs with voltage
controllers) are simulated. In the next step a list of variables to
be logged is imported from text files after which, profiles are
loaded from comma separated files and assigned to the
individual loads and PVs. Steady state simulation is run after
implementation of the VPFC and updating object properties
from either controller output or the loaded profiles. The
simulation ends when either EOF or invalid load flow is
condition is true. The flow chart in figure 10 gives an overview
of the simulation setup.

Fig. 10. Flow chart for test case 2

0 5 10 15 20
7.52

7.54

7.56

7.58

7.6

7.62

Iteration

S
ys

te
m

 lo
ss

es
 -

M
V

A

489

Nameplate PV output (S_Max) for the implemented
example is 5 kVA for all the PVs in the distribution system.
Reactive power limits (Q_Max) have been set to 1 kVAR.
Listing 3 is an implementation of an open loop voltage
controller in Matlab. The controller generates set points for the
active power output and the power factor of the inverters
subject to the inverter reactive power limits and the maximum
possible power that can be generated.

function [P,CosPhi] = P_Phi_Controller_2(S,S_Max,Q_max)
 Snew = S/S_Max;
 if (Snew < 0.5)
 CosPhi = 1;
 P =S;
 elseif (Snew > 1)
 CosPhi = 0.95;
 P = Calculate_P(S,CosPhi,Q_max);
 else
 CosPhi = -0.1*Pnew+1.05;
 P = Calculate_P(S,CosPhi,Q_max);
 end
end

function [P] = Calculate_P(S,CosPhi,Q_max)
 P = S * CosPhi;
 Q = S * sin(acos(CosPhi));
 if Q > Q_max
 P = Q_max/tan(acos(CosPhi));
 end
end

Listing. 3. Implementation of PV voltage controllers in Matlab

The graphs in the left column (figure 11) are the voltages
measured at the point of common coupling (PCC) of the grid
and the PVs. The effect of the controller on the voltage at PCC
is clearly visible. When the inverter output increases above
50% of the nameplate power, reactive power compensation
suppresses the voltage at PCC. Once the inverters reactive
power capability is reached, the active power is curtailed to
insure that the power factor is within the intended bounds.

Fig. 11. Simulation results for test case 2
The test case provides an example for data logging, profile

assignment and controller implementation. In similar fashion
other controllers e.g. an Onload-tap-changer controller can
easily be implemented in Matlab for steady state simulations.

V. CONCLUSION

In this section a conclusion is derived in light of the
implemented test cases and a comparison with other coupling
methods discussed in section II.

A. Ease of implementation
The single biggest advantage of the proposed coupling

method is the ability to access both PowerFactory object
parameters and internal calculation parameters directly from
Matlab. In listing 2, internal PowerFactory calculations have
been used to calculate the fitness of the objective function
instead of exporting all line losses to Matlab, thereby reducing
the number of parameters communicated to Matlab each time
step.

The implemented PowerFactory API wrapper “PF-ML-
Coupler” provides a number of high level functions that can
called directly from Matlab. These functions can use to
automate simulations with different scenarios and export
results to Matlab. A proof of concept has been implemented in
test case 2.

All PowerFactory power system analysis tools e.g. modal
analysis, reliability assessment, protecting etc. can also be
executed directly from Matlab.

One drawback of DPL scripting it does not provide support
for code versioning. Moreover, in case of file sharing, one part
of the code is implemented in PowerFactory and the other part
is implemented in Matlab, which makes it difficult for a new
user to understand the code. While working with the new
library, a software repository tool can be used to version the
code written in Matlab.

B. Flexibility
Matlab is a powerful scripting language that can be used to

implement custom programs for many different applications
such as solving user defined optimization problems,
implementing a custom load shedding algorithm or
implementing a controller. The API wrapper, “PF-ML-
Coupler” is an efficient tool to implement such problems. As
an example, a user defined optimization algorithm has been
implemented successfully in test case 1.

Matlab has a plethora of toolboxes and a very large active
community. These tool boxes can be used in conjunction with
power system simulations to get a better insight of the problem.
For example the statistics toolbox can be used to understand
the extent of effectiveness of a demand side management
algorithm when used under several hundred different scenarios.

It is further important to mention that presented wrapper
can be extended to achieve the additional functionality. This is
pretty straightforward due to the adopted methodology for
coupling these two software packages.

C. Reduction in communication overhead
Schemes descripted in section II have inherent delay that
result in a slower interfacing for example file based exchange
it is obvious that file access is the slowest possible
interconnection. For the build in DSL Matlab interface it

1.02

1.04

1.06

1.08

Vo
lta

ge
 [p

.u
.]

w

ith
ou

t c
on

tro
lle

r

0

1

2

3

4

5

In
ve

rte
r O

ut
pu

t

W
ith

 o
ut

 c
on

tro
lle

r

P (kW)
Q (kVA)

0 6 12 18 24
1.01

1.02

1.03

1.04

1.05

1.06

Time [h]

V
ol

ta
ge

 a
t P

C
C

 [p
.u

.]
P

 -
C

os
Ph

i c
on

tro
lle

r

0 6 12 18 24
-1

0

1

2

3

4

Time [h]

In
ve

rte
r O

ut
pu

t
P

 -
C

os
Ph

i c
on

tro
lle

r

P (kW)
Q (kVA)

490

comes from invoking Matlab in every time step, need for
creating global variables in case of using Simulink and re-
initializing it with persisting variables for every time step

REFERENCES

[1] H. Lin, S. Sambamoorthy, S. Shukla, J. Thorp and L. Mili, "Power
system and communication network co-simulation for smart grid
applications," in Innovative Smart Grid Technologies (ISGT), 2011
IEEE PES, 2011.

[2] D. Powerfactory, "PowerFactory User’s Manual," DIgSILENT, GmbH,
2011.

[3] M. U. Guide, "The mathworks," Inc., Natick, MA, vol. 5, p. 333, 1998.

[4] A. Stativa, M. Gavrilas and V. Stahie, "Optimal tuning and placement
of power system stabilizer using particle swarm optimization
algorithm," in Electrical and Power Engineering (EPE), 2012
International Conference and Exposition on, 2012.

[5] M. Stifter, R. Schwalbe, F. Andr{\'e}n and T. Strasser, "Steady-state co-
simulation with PowerFactory," in Modeling and Simulation of Cyber-
Physical Energy Systems (MSCPES), 2013 Workshop on, 2013.

[6] H. Saadat, Power System Analysis,(2nd), McGraw-Hill Higher
Education, 2009.

[7] A. Latif and P. Palensky, "Economic Dispatch Using Modified Bat
Algorithm," Algorithms, vol. 7, no. 3, pp. 328-338, 2014.

[8] R. Passey, T. Spooner, I. MacGill, M. Watt and K. Syngellakis, "The
potential impacts of grid-connected distributed generation and how to
address them: A review of technical and non-technical factors," Energy
Policy, vol. 39, no. 10, pp. 6280-6290, 2011.

[9] E. Demirok, P. Casado Gonzalez, K. H. Frederiksen, D. Sera, P.
Rodriguez and R. Teodorescu, "Local reactive power control methods
for overvoltage prevention of distributed solar inverters in low-voltage
grids," Photovoltaics, IEEE Journal of, vol. 1, no. 2, pp. 174-182, 2011.

[10] V. V. d. E. E. Informationstechnik, "eV: VDE-AR-N 4105: 2011-08:
Power generation systems connected to the low-voltage distribution
network Technical minimum requirements for the connection to and
parallel operation with low-voltage distribution networks," English
translation of the VDE application rule VDEAR-N-4105.

491

Powered by TCPDF (www.tcpdf.org)

