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Abstract— PowerFactory is a powerful power system analysis 
tool used for simulating the electrical grid. ‘Smart Grid’ 
envisions a modernized electrical grid that uses communication 
to gather and act on information. The ever increasing 
communication and controls in power systems increases the 
complexity of the system. Co-simulation becomes essential to 
couple system simulators from different domains. This paper 
gives an overview of possible PowerFactory / Matlab coupling 
approaches. It further discusses the advantages and limitations of 
each of these. Additionally, an alternate coupling approach is 
suggested, its pros and cons are discussed. Two test cases have 
been implemented that highlight different advantages of the 
proposed method. 

Keywords—PowerFactory; Matlab; Co-Simulation; Software 
coupling 

I.  INTRODUCTION 
 

With increasing share of renewable energy in the electricity 
market, there is a growing need for a power grid simulator that 
can cater for interdependencies between the power grid and 
other domains such as the communication network, weather 
forecasting tools etc. [1]. Many commercial and open source 
tools are available that are domain specific e.g. ETAP and 
PowerFactory for power systems simulation, OMNET++ and 
Opnet for communication network simulation and F5 for 
weather forecasting. One solution to simulate these 
interdependencies is coupling these domain specific tools 
together.   

PowerFactory is a tool for analysis of the electrical power 
system designed for domain experts. The software package is 
vertically integrated catering to both transmission and 
distribution networks. It provides capabilities for load flow, 
short circuit analysis, steady state, transient , optimal power 
flow as well as several other studies for balanced and 
unbalanced systems. In PowerFactory system dynamics can be 
investigated using load flow, root mean square (RMS) 
simulation or electro-magnetic transient simulation depending 
on the time constant of the phenomena. DIgSILENT 
Programming Language (DPL) is a scripting language in 
PowerFactory that can be used to access objects and automate 
tasks e.g. short circuit sweep. DPL however cannot be used 
while RMS simulation is running. Custom controllers and 
algorithms can be implemented in PowerFactory using 
DIgSILENT Simulation Language (DSL) [2].  

Matlab is a high level language with a large number of 
interdisciplinary tool boxes e.g. optimization, signal 
processing, statistics, image processing etc. [3]. Using co-
simulation framework these toolboxes can be used in 
conjunction with PowerFactory to extend its capabilities. A key 
feature of Matlab is Simulink, a multi-domain GUI based 
simulation environment, which comes with a huge library for 
modeling both continuous and discrete time systems. This 
makes it an ideal tool to implement custom system models such 
as generators, relays etc.   

Andrei Stativa et al. [4] in their work optimized the tuning 
parameters of power system stabilizers and its placement by 
implementing the controllers in PowerFactory and a multi-
objective optimization algorithm in Matlab. Statistics toolbox 
can potentially be very useful to automate statistical analysis 
for results obtained from a large number of simulation runs. 
Matthias Stifter et al. [5] in their Co-Simulation Training 
Platform for Smart Grids implemented the power system in 
PowerFactory, components like generators and batteries in 
Matlab and the control system in 4DIAC. 

The paper is organized as follows: Section II gives an over 
view of various PowerFactory/Matlab coupling schemes. 
Additionally, a pros and cons of each of these methods are 
discussed. Section III describes the coupling architecture of the 
proposed method. Two test cases have been implemented and 
discussed in Section IV to highlight different advantages of the 
proposed method. In Section V a conclusion is derived based 
on the results detailed in Section IV.   

II. COUPLING SCHEMES 

PowerFactoy supports a number of external interfaces that 
can be used for data exchange and Matlab coupling. User 
requirements and ease of implementation are the main driving 
factors in selection of the interface used for coupling.  

A. PowerFactory’s builtin Matlab interface 
1) PowerFactory provides a direct interface to Matlab by 

connecting a DSL model to a Matlab script. In this co-
simulation framework Matlab runs in engine mode [2] and the 
simulation runs in a sequential manner. Matlab is invoked at 
every time step and all the parameters are sent. It then returns 
a time vector, state variable matrix and controller output 
matrix. PowerFactory uses the matrices and the time vector to 
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calculate the derivatives and the output of the controller. 
Figure 1 illustrates the sequential co-simulation procedure 
between PowerFactory and Matlab. 

 

 

Fig. 1. Sequential co-simulation of PowerFactory and Matlab 
 

B. Peer-to-peer (P2P)  
1) Andrei Stativa et al. [4] used  a file sharing approach  

to couple Matlab and PowerFactory for an optimization 
problem. The power system was modeled in PowerFactory 
and the optimization algorithm was implemented in Matlab. 
Figure 2 is the graphical illustraton of the coupling scheme of 
the two simulators. Three CSV files, one dedicated for 
transfering data from Matlab to PowerFactory, one to transfer 
results from PowerFactory to Matlab and one to switch 
between the two simulators, were used in this coupling 
scheme.  

 

 
Fig. 2. File sharing between Matlab and PowerFactory 
 

2) PowerFactory provides OPC interface for 
asynchronous data exchange. It is popular interface for 
industrial networks for SCADA and control system 
implementation. OPC interfacing requires a dedicated OPC 
server and PowerFactory to run as an OPC client. The 
frequency of data transfer is user defined. Matlab has an OPC 

toolbox that enables it to connect to an OPC server. Figure 3 
illustrate a possible PowerFactory/Matlab coupling scheme.  

 

 

Fig. 3. Matlab and PowerFactory communicate as OPC client 
 

3) A powerful feature of PowerFactory is the ability  of 
a user to include external C++ functions in both DSL blocks 
and DPL scripts. [5] implemented a socket comunication 
example using an external DLL to open a socket to a server 
and transmit measured data. Matlab provides builtin 
commands for socket communication. The same principle can 
be extended to implement a bidirectional communication with 
Matlab via sockets. Figure 4 shows a scheme for coupling 
PowerFactory DSL block and Matlab using sockets. 
 

 

Fig. 4. PowerFactory and Matlab coupling via sockets using external DLL 
 

C. Coupling PowerFactory and Matlab using Libray (dll) 
1) PowerFactory’s application programming interface 

(API) is perhaps the most power interfacing scheme. The API 
provides 3rd party applications access to PowerFactory data 
models, internal calulations and simulation functions. The API 
runs PowerFactory in engine mode. The C++ application can 
then communicate with Matlab using several different 
techniques as shown in Figure 5. 

a) Matlab provides an API for C++ that can be used to 
couple the two simulators. In this coupling scheme both 
PowerFactory and Matlab are accessed via API and the C++ 
application instantiates both the simulators. 

b) The C++ application can use a socket to 
communicate with Matlab, making the C++ controlling 
application and PowerFactory once again will be instantiated 
using the API.  

 

 

Fig. 5. PowerFactory and Matlab coupling using the API 

III. PF-ML-COUPLER 
To be able to create an instance of PowerFactory from 

within Matlab a wrapper “PF-ML-Coupler” has been written 
and assembled as a .NET object. The wrapper uses the API 
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interface and extends its low level functionality. These 
functionalities include: 

 Running balanced and unbalanced load flows 

 Control over RMS and transient simulation  

 Read / write object values 

 Read PowerFactory internal calculations 

 Running other power system analysis tools provided by 
PowerFactory i.e. modal analysis, reliability analysis, 
optimal power flow etc. 

 Exporting result files 

 Create / delete objects within PowerFactory. 

Matlab version R2009a and later can dynamically load 
DLLs assemblies from .NET Framework class library. The 
library will only be loaded if all three i.e. Matlab, 
PowerFactory and the wrapper are either 32 bit or 64 bit builds. 
It is important to note that due to limitations of .NET, Matlab 
has access to the values of an object and not the object itself. 
Figure 6 illustrates the coupling scheme. 

 
    

 
Fig. 6. PowerFactory / Matlab coupling using a .NET DLL (PF-ML-Coupler) 

 

The Matlab example in Listing 1 shows how to activate a 
project in PowerFactory and run load flow. The C++ library is 
made visible to Matlab, after which the constructor is used to 
create an instance of PowerFactory. PowerFactory starts in 
engine mode and functions calls can be used to perform 
functions like changing the visibility of PowerFactory instance, 
active a project and run a load flow.    

 

DllPath = 'C:\Users\LatifA\Desktop\PF-ML-Coupler.dll'; 
PFpath = ‘C:\Program Files (x86)\DIgSILENT\PowerFactory 15.1’ 
PFwrapperDll = NET.addAssembly(DllPath); 
PFinstance  = PFnamespace.PowerFactory(PFusername, PFpassword, 
PFpath); 
PFinstance.setVisibility(isPFvisible); 
PFinstance.ActivateProject(PFproject); 
isLFvalid = PFinstance.RunLoadFlow(LFtype); 
 

 

Listing. 1. Matlab load flow example using PF-ML-Couple 

IV. TEST CASES 

In this section two implemented testcases will be dicussed. 
The testcases highlight the advantages and the possibilities 
one has by coupling the two simulators.  
 

A. Optimizing custom objective functions 
 

PowerFactory provides a tool for calculating optimal power 
flow. However, the objective functions are predefined and 
implementing user defined objective functions is yet not 

possible. Matlab is an ideal tool to implement optimization 
algorithm and define a custom objective function. Multi-
objective optimization is another possibility. 

Loss minimization (LM) is an optimization problem for 
scheduling generator output to minimize system losses. For the 
test case a simple five bus system has been implemented in 
PowerFactory with four lump loads, two generators and an 
external grid [6].  

 
* The example has been taken from [6] example 7.9 

Fig. 7. The 5 bus system 
 

The LM problem has been formulated as a sum of losses of 
all transmission lines (TL), where ்ܲ   and ்ܳ are the active 
and reactive power loss of the ݅th TL, and ܵ is sum of all TLs. 

ܰ is the total number of TLs in the network. 

)ܨ ܵ)  =   ට( ்ܲ
ଶ + ்ܳ

ଶ)

ே

ୀଵ

 

The objective function can then be formulated as: 

min  [ ܨ( ܵ)] 
Subject to constraints: 

ܲ
 ≤  ܲ ≤ ܲ

௫ 

Where, ܲ is the real power output of the ݅th generator and 
ܲ
  and ܲ

௫ are the lower and the upper bound of the ݅th 
generator. Listing 2 details the implementation of the objective 
function in Matlab. 
 

 

function [ Fitness ] = CostFunction( P ) 
    global PFinstance; 
    [r,c] = size(P); 
    Fitness(r) = 0; 
    for i = 1:r 
        Pgini = P (i,1:c); 
        PFinstance.SetPropertyDouble('Sync Gen 2','pgini',Pgini(1)); 
        PFinstance.SetPropertyDouble('Sync Gen 4','pgini',Pgini(2)); 
        PFinstance.RunLoadFlow(0);  
        Fitness(i) = sqrt(PFinstance.GetPropertyDouble('Grid','c:LossP') ^2                        

+ PFinstance.GetPropertyDouble('Grid','c:LossQ') ^ 2);      
    end 
end 
 

 

Listing. 2. Implementation of the objective function in Matlab 

Table 1 lists the additional generation constraints used for 
the experiment.   
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TABLE I.  GENERATOR OPERATIONAL LIMITS 

Generator ࡼ(MW) ࢞ࢇࡼ(MW) 

S1 10 40 

S2 20 100 

 

Modified bat algorithm (MBA) [7] is a variant of bat 
algorithm; a population based metaheuristic optimization 
technique like particle swarm and genetic algorithm. The 
algorithm mimics the echolocation behavior most prominent in 
micro bats. The algorithm is an iterative algorithm, were in 
each new generation the bats converge towards the best 
experienced to that point and move away from the worst 
experiences. 

In this experiment MBA has been used to optimize the 
formulated objective function. For the simulation, population 
size has been set to six and the maximum iteration limit has 
been set to 20. Figure 8 presents the simulation results. Optimal 
active power dispatch in this example is 40 MW and 88.87 
MW for generator S1 and S2 respectively. 

 
Fig. 8. Loss minimization using Modified Bat Algorithm 

 
The experiment provides a proof of concept of optimizing 

user defined objective functions by coupling PowerFactory and 
Matlab. Matlab Optimization Toolbox provides a large number 
of algorithms which can alternatively be used to solve the 
problems with single and multiple objectives. 

 

B. Implementing controller for steady state simulation 
 

In areas with high PV penetration periods of high PV 
production and low consumer consumption results in over 
voltages. As the electrical distance from the transformer along 
the feeder increases this phenomenon becomes more 
prominent. In some cases the voltage rise can be severe enough 
to damage electrical equipment [8].  

Variable power factor control (VPFC) is a voltage control 
method that reduces network losses compared to constant 
power factor method. Another advantage of using variable 
power factor control is that it is open loop hence very stable 
[9]. The German guide line VDE-AR-N 4105 also recommends 
characteristics shown in figure 12 [10]. Figure 9 illustrates 
controller design used in the experiment. 

 

Fig. 9. Characteristics of the voltage controller 

In the following example several different scenarios 
(without PVs, PVs with controllers and PVs with voltage 
controllers) are simulated. In the next step a list of variables to 
be logged is imported from text files after which, profiles are 
loaded from comma separated files and assigned to the 
individual loads and PVs. Steady state simulation is run after 
implementation of the VPFC and updating object properties 
from either controller output or the loaded profiles. The 
simulation ends when either EOF or invalid load flow is 
condition is true. The flow chart in figure 10 gives an overview 
of the simulation setup. 

 

 

Fig. 10. Flow chart for test case 2 
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Nameplate PV output (S_Max) for the implemented 
example is 5 kVA for all the PVs in the distribution system. 
Reactive power limits (Q_Max) have been set to 1 kVAR. 
Listing 3 is an implementation of an open loop voltage 
controller in Matlab. The controller generates set points for the 
active power output and the power factor of the inverters 
subject to the inverter reactive power limits and the maximum 
possible power that can be generated. 

 

 

function [ P,CosPhi ] = P_Phi_Controller_2(S,S_Max,Q_max)   
    Snew = S/S_Max; 
    if (Snew < 0.5) 
        CosPhi = 1; 
        P =S; 
    elseif (Snew > 1) 
        CosPhi = 0.95; 
        P = Calculate_P(S,CosPhi,Q_max); 
    else 
        CosPhi = -0.1*Pnew+1.05; 
        P = Calculate_P(S,CosPhi,Q_max); 
    end 
end 
  
function [P] =  Calculate_P(S,CosPhi,Q_max) 
    P = S * CosPhi; 
    Q = S * sin(acos(CosPhi)); 
    if Q > Q_max 
        P = Q_max/tan(acos(CosPhi)); 
    end 
end 
 

Listing. 3. Implementation of PV voltage controllers in Matlab 
 

The graphs in the left column (figure 11) are the voltages 
measured at the point of common coupling (PCC) of the grid 
and the PVs. The effect of the controller on the voltage at PCC 
is clearly visible. When the inverter output increases above 
50% of the nameplate power, reactive power compensation 
suppresses the voltage at PCC. Once the inverters reactive 
power capability is reached, the active power is curtailed to 
insure that the power factor is within the intended bounds.    

 

Fig. 11. Simulation results for test case 2 
The test case provides an example for data logging, profile 

assignment and controller implementation. In similar fashion 
other controllers e.g. an Onload-tap-changer controller can 
easily be implemented in Matlab for steady state simulations. 

V. CONCLUSION 
 

In this section a conclusion is derived in light of the 
implemented test cases and a comparison with other coupling 
methods discussed in section II. 

A. Ease of implementation 
The single biggest advantage of the proposed coupling 

method is the ability to access both PowerFactory object 
parameters and internal calculation parameters directly from 
Matlab. In listing 2, internal PowerFactory calculations have 
been used to calculate the fitness of the objective function 
instead of exporting all line losses to Matlab, thereby reducing 
the number of parameters communicated to Matlab each time 
step.     

The implemented PowerFactory API wrapper “PF-ML-
Coupler” provides a number of high level functions that can 
called directly from Matlab. These functions can use to 
automate simulations with different scenarios and export 
results to Matlab. A proof of concept has been implemented in 
test case 2.  

All PowerFactory power system analysis tools e.g. modal 
analysis, reliability assessment, protecting etc. can also be 
executed directly from Matlab. 

One drawback of DPL scripting it does not provide support 
for code versioning. Moreover, in case of file sharing, one part 
of the code is implemented in PowerFactory and the other part 
is implemented in Matlab, which makes it difficult for a new 
user to understand the code. While working with the new 
library, a software repository tool can be used to version the 
code written in Matlab. 

B. Flexibility 
Matlab is a powerful scripting language that can be used to 

implement custom programs for many different applications 
such as solving user defined optimization problems, 
implementing a custom load shedding algorithm or 
implementing a controller. The API wrapper, “PF-ML-
Coupler” is an efficient tool to implement such problems. As 
an example, a user defined optimization algorithm has been 
implemented successfully in test case 1. 

Matlab has a plethora of toolboxes and a very large active 
community. These tool boxes can be used in conjunction with 
power system simulations to get a better insight of the problem. 
For example the statistics toolbox can be used to understand 
the extent of effectiveness of a demand side management 
algorithm when used under several hundred different scenarios. 

It is further important to mention that presented wrapper 
can be extended to achieve the additional functionality. This is 
pretty straightforward due to the adopted methodology for 
coupling these two software packages.  

C. Reduction in communication overhead 
Schemes descripted in section II have inherent delay that 
result in a slower interfacing for example file based exchange 
it is obvious that file access is the slowest possible 
interconnection. For the build in DSL Matlab interface it 
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comes from invoking Matlab in every time step, need for 
creating global variables in case of using Simulink and re-
initializing it with persisting variables for every time step  
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